Embedded Systems

Statistical Performance Estimation and Extrapolation

Bachelor’s Thesis / Master’s Thesis / Student Research Project

Abstract

This student project’s goal is to use statistical methods on benchmark data for Performance Estimation of Embedded AI Accelerator Architectures. The approach should be compard to state-of-the-art statistical performance modeling methods like ANNETTE or the Performance Representatives (PR).

References

Requirements

  • Python
  • Machine Learning
  • Linux
  • Successfully atteded the lecture “Grundlagen der Rechnerarchitektur”
  • Successfully atteded the lecture “Modellierung und Analyse Eingebetteter Systeme” (optional)
  • Successfully atteded the lecture “Efficient Machine Learning in Hardware” (optional)

Contact

Jung, Alexander

Bringmann, Oliver