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Abstract— Verification and robustness testing of machine
learning algorithms for autonomous driving is crucial. Due to
the increasing complexity and quantity of those systems in a
single vehicle, just driving the required distance with a newly
developed vehicle is not feasible anymore: billions of hours on
the street without failure are necessary to qualify for industry
standards like ISO 26262. That is where simulation comes into
play: machine learning algorithms are trained and evaluated
on well known image data sets like KITTI or Cityscapes. But
today’s data sets mostly contain images taken under perfect
weather conditions and therefore do not harden optical object
detection algorithms against various weather conditions. This
paper focuses on reusing these established and labeled data
sets by augmenting them with adverse weather effects like
snow and fog. Those effects are rendered physically correct
and life like while being added to existing real world images.
Thanks to easy parametrization the weather influences may be
varied as necessary and allow for finely tuned learning and
optimization processes. The weather effects are evaluated with
regard to realism and impact on an established object detection
algorithm. These newly created weather-influenced images may
be used to validate or train new object detection algorithms.

I. INTRODUCTION

Object detection plays a key role in autonomous driving

applications. When failing, the self driving vehicle must

come to a full stop or give control to the driver, who may be

inattentive. While falling back to manual driving might be an

option in level one to three autonomous driving, the overall

goal is to achieve full autonomy. Even very frequent weather

conditions like rain and fog disrupt today’s autonomous

vehicles on a daily basis – Waymo taxis, usually self driving,

will have to rely on human assistants in rainy weather [1].

To combat this deficiencies numerous tests have to be

passed under millions of different condition combinations.

According to ISO 26262, a self driving system has to absolve

109 km of driving on the road with at most one failure [2].

Other research states that 108 km suffice depending on the

quality of the tests [3]. Hoping to be able to drive, record

and verify this enormous distance for every iteration of all

components in such a vehicle is ludicrous. Waiting for every

one of this situations happen just to check if a single traffic

scenario gets mastered by the system is impossible.

Currently used image data sets like KITTI and Cityscapes

are recorded largely under good weather conditions [4], [5].

Even data set which specifically try to cover all possible

environmental influences, like [6], only contain very few

images showing snowy roads and none showing falling snow.
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This is where simulation comes into play. Both Software

and Hardware in the Loop (SiL and HiL) are necessary

in order to reduce the amount of real world tests required

to qualify for ISO 26262. Traffic scenarios only become

manageable when all vehicles are under control of one testing

instance; let alone the millions of combinations existing

when looking at possible variations of sunshine, rain, wind,

fog, snow and more.

While some research was already done simulating rain or

dust on real video data taken from a test vehicle, none created

synthetic yet realistic correct fog or snow and examined

their effects on object detection. This paper explores the

possibilities of scene reconstruction in combination with

physically correct simulation of fog and snow, comparing

both effects with the real world and showing the degradation

of object detection quality with growing intensity of the

weather conditions. By utilizing existing data sets like KITTI

or Cityscapes as well as simulators like Vires VTD or

CARLA and newly created images and videos, we show the

wide applicability of our approach.

First we examine research that touches the matter of

weather simulation on images as well as snow and fog in

particular. Then both snow and fog generation are presented

in more detail beginning with the scene reconstruction and

ending with the rendering in OpenGL. Finally, the simulated

influences are tested for realism and impact on state of the

art visual object detection algorithms.

II. RELATED WORK

Several attempts have been made to simulate different

physical equipment and various external influences on video

cameras. Hospach et al. described a camera model that is

used to transform high quality video recordings into shots

as if they were made with another camera [7]. This allows

for one single test drive to be recorded and later morphed

to all possible cameras that may be embedded in vehicle

prototypes, eliminating the need for new test drives for every

hardware iteration. Together with Mueller he created a frame-

work that allows for environmental influences to be added

as plugin, creating a simple way to test multiple variations

thereof quickly [8]. Finally, they introduced a physically

correct simulation of falling rain and examined the impact

on lane detection algorithms [9]. However, only camera

characteristics and the influence of rain were investigated,

ignoring other mayor factors like snow and fog.

A very simple method to add snow into a scene is proposed

by Wang and Wade [10]. It consists of a structure sur-



Fig. 1. Example of a street image before and after augmentation with both snow and fog. On the left half the image is shown unaltered, on the right side
we simulated falling snow at a vehicle speed of 50 kmh−1, a snow fall speed of 1 ms−1 and crosswinds of 1 ms−1 as well as light fog with the method
proposed in this paper. Motion blur is visible especially towards the edges of the scene. Image depth was calculated from a pair of stereo images.

rounding the virtual camera, on which a transparent texture

containing many 2D snowflakes is applied. After z-buffer-

testing and blending, the scene looks like there is snow

falling in front of the camera. Of course this method is rudi-

mentary and not realistic, as neither depth nor falling speeds

are considered. Another simplifying method was proposed

by Zhuo and Libaicheng: they draw the falling snowflakes

as billboards that always point towards the observer [11].

Thus they are visible at all times, but lack the realism of

rotating and flat flakes. Aleshin et al. built a ski simulator that

accounts for falling snow as obstruction for the athlete [12].

Lv and Liu describe a method to model snow flakes very

simplified based on wind and gravity, but do not render a

scene [13]. Various authors examine the way snow falls and

covers the ground as well as objects that are present [14]–

[17].

While their research is thorough, none paid close attention

to the realism of the flakes while they are falling. Addition-

ally none of the works mentioned above is applicable on

images that already exist, not to mention real world scenes.

This gets addressed by Langer and Zhang, who use a trick

to render noise as if it was falling snow: they apply a Fast

Fourier Transform on an existing image, add noise in the

frequency domain and the inverse the transform [18]. This

leads to snow-like artifacts with respect to “depth” – but no

real distance is calculated in the process. Jaeger tried adding

a snow cover on existing images as well, coloring every pixel

that is closer to the camera as the pixel above it white [19].

This results in interesting however unrealistic images.

Regarding fog much more research has been carried out.

Examples for very basic virtual fog simulation can be found

from Sellers or Aleshin [12], [20] who approximate fog using

a single equation, not taking anything else but the distance

from the camera to the objects into account. Even modern

works like the one of Sakaridis et al. use very simple light

attenuation formulas [21]. While Zdrojewska uses Perlin

noise to simulate different fog densities throughout the scene,

Chen evaluates fog integrals for light rays traveling in the

scene and Biri and Michelin even involve wind in their

calculations [22], [23]. To get even more advanced, multiple

other authors introduce volumetric fog in their render ap-

proaches [24], [25]. Finally, Dumont or Jensen follow Monte-

Carlo-driven methods in which they shoot multiple rays per

pixel into a scene filled with fog in order to have results that

are virtually realistic [26], [27].

Maximum realism is only achieved by Colomb et al. [28].

They built a full sized fog chamber where they can simulate

real fog at all lighting conditions and any still scenario. Using

real vehicles and pedestrians, all measurements translate

perfectly to the real world. Unfortunately, moving scenarios

as well as other environmental influences are impossible to

simulate.

While much research was done on isolated topics like

snow cover formation fall paths of single snowflakes, fog

rendering in virtual scenes or volumetric lighting effects,

none of the authors mentioned above investigated the possi-

bility to render snow or fog realistically onto existing images.

Also, no research was done to examine the influence of those

simulated weather conditions on object detection.

This paper explores the ways in which varying fog and

snow can be rendered physically correct on real scenes (see

Fig. 1) and how these conditions impact object detection. In-

tegrated in a simulation and testing framework, the proposed

methods allow for fast function tests on newly created or

recently updated perception algorithms.

III. SNOW GENERATION

Rendering the snow flakes requires multiple steps. First,

the 3D scene has to be reconstructed in OpenGL using either

stereo images and disparity matching or a single image with

depth information from a different origin. Into this scene

virtual snow flakes are distributed according to physical and

meteorological principles. Finally, OpenGL is used to render

the scene together with the snow flakes and generates a

realistic image. Motion blur, caused by the flakes motion

relative to the viewer (due to wind, gravitation and vehicle

speed), as well as light attenuation are respected.



A. Scene Reconstruction

Introducing snow into an existing real scene requires the

reconstruction of that scene – otherwise depth effects and

occlusion of both snow flakes and road objects will not

unfold.

Rebuilding a scene requires depth information, either from

stereo images, lidar or other sensors. Stereo vision calculates

the depth based on two images taken by cameras next to each

other. After camera calibration every pair of images can be

processed and the distance of each pixel to the camera can

be determined.

Both Cityscapes and KITTI data sets provide stereo im-

ages (Cityscapes even comes with precomputed depth maps)

that are suitable for 3D reconstruction.

Lidar or radar sensor information may be used to deter-

mine the distance of objects in front of a vehicle as well –

but the point clouds representing the environment have to be

mapped into view space, which can be challenging.

Especially synthetic images generated by simulators like

Vires VTD or CARLA provide perfect depth informa-

tion [29], [30]. Although those simulations come with some

weather models, neither provides physically correct snow nor

fog or their influences on the optical sensor.

After obtaining the depth map for a given image, re-

construction is a matter of trigonometry. Each pixel gets

projected from an image plane into the 3D space. At that

point in space a quad (a rectangle made out of two triangles),

parallel to the image plane, is created and colored according

to the original pixel color. Each quad is scaled so that if

rendered it is visible in exactly one pixel in the rendered

image. Hence, when rendering all quads at once the resulting

rendered image is exactly the same as the original image but

is now ready for 3D manipulations.

B. Snow Distribution

With the 3D scene prepared the next step is to place up to

many billion single snow flakes in front of the camera. To

limit the execution time to a reasonable level, some restric-

tions have to be made in terms of the maximum number of

particles. Since single snow flakes become indistinguishable

to an optical sensor as soon as they are far enough away, only

a limited space in front of the camera has to be populated

with flakes. Light attenuation effects that are caused by the

consolidated snow masses are taken care of in a later step.

Depending on the general motion vector of the snow, the

space behind and left and right of the camera may be ignored

as well.

The single parameter describing all properties of falling

snow directly and indirectly is the snow fall rate (precipita-

tion, Rs [mmh−1]). Once set, the snow mass concentration

in the air (Ms [gm−3]) can be calculated according to Koh

and Lacombe [31]:

Ms = 0.30 ·Rs (1a)

Ms = 0.47 ·Rs (1b)

Equation (1a) comes into play when the snow is “dense”

(e.g. in snow storms) whereas (1b) describes regular snow.

Together with the mean mass of a single snow flake (0.2 g,

[32]) this density can be converted into the number of flakes

per volume (Ns [m−3]):

Ns =
Ms

0.2g
(2)

Using this ratio we populate a cuboid, placed in front

of the camera, with snow flakes. The cuboid’s dimensions

are arbitrarily chosen and primarily control render time. It

has to be sufficiently deep so that the farthest flakes are

not distinguishable anymore. Assuming that all particles are

distributed uniformly simple random numbers suffice to set

all necessary coordinates. One could use a frustum instead a

cuboid to save some render time.

With the flakes’ positions set, in the next step their size

has to be determined. As not all snow flakes share the same

diameter, a distribution has to be applied. According to Gunn

and Marshall (and corrections from Skehon and Srivastava),

snow flake size may be calculated from the precipitation and

is described by an exponential formula [33], [34]. Let D be

the snow flake diameter in [cm] and R the snow precipitation

in [mmh−1], then the relative frequency of a flake with that

diameter ND can be calculated as follows:

ND = N0 · e
−ΛD (3a)

N0 = 2.50×103 ·R−0.94 [m−1 m−3] (3b)

Λ = 22.9 ·R−0.45 [cm−1] (3c)

Using a piece-wise defined weighted probability distribu-

tion function (weighted by ND), an appropriate diameter is

assigned to each generated snow flake.

C. Rendering Snow Flakes

Having determined size and position of each pixel and

snowflake, those parameters are fed into an OpenGL render

pipeline. Additionally, the pixel colors as well as snow flake

textures are sent to the graphics card.

Finally, the geometric properties of a snowflake are de-

fined: we either assume that snow flakes are flat crystals

and render them as quads, or we view them as thick aggre-

gated flakes and render them as three pairwise perpendicular

quads [14]. Each quad is assigned a texture, see Fig. 2.

In the snow shader all flakes are rotated randomly and

three velocity vectors (wind, gravity, car) together with a

time stamp determine the temporal position of each flake.

An additional random vector is added to simulate turbulence

in the air, its length based on the velocity vector.

In the next step all pixels and all snow flakes are rendered

from far to near in order to account for some OpenGL opacity

pitfalls. Utilizing super-sampling, aliasing is mitigated.

As video or photo cameras always open their aperture for

a short but not negligible amount of time to take a picture,

motion blur has to be considered. We use knowledge about

the camera setup to determine the exposure time or fall

back to a healthy default of 16.7 ms (≈ 60fps). This time

frame is divided into a customizable number of inter-frames

(30 is sufficient for Full HD resolution). For each inter-

frame all snow flakes are repositioned according to their



(a) Light Snow (b) Heavy Snow

Fig. 2. Models of a single snow flake, depending on the precipitation
rate: heavy snow rather has big flakes while light snow tends to consist of
thin flakes. A flake texture is added to each quad instead of modelling the
flakes exactly to dramatically reduce the number of vertices to draw. The
black quads are only drawn for visibility reasons in this figure and usually
are fully transparent. Texture image from pngimg.com (CC BY-NC 4.0).

motion vectors and the current time stamp, then the scene is

rendered. Weighted addition of each inter-frame then leads

to realistic motion blur.

IV. FOG GENERATION

The second environmental phenomenon we simulate is

fog. Fog can dramatically reduce visibility and lead to

accidents even for experienced drivers, let alone self driving

vehicles.

While theoretically no 3D reconstruction is needed to

simulate fog (without using extensive rendering techniques

like volumetric particles), we implemented our light attenu-

ation algorithms in the pixel shader known from the snow

simulation. This brings the benefits of massive parallelism

at no extra cost or effort. For that, physical basics and Mie

scattering (how light scatters on small drops) have to be

revisited first before light falloff can be simulated correctly.

A. Physical Basics

When light traverses fog, which is just very fine water

spray, the rays are affected by those very small water drops.

Either they do not intersect with any particles and reach

the viewer without any interaction, or they are absorbed

completely, or scattered in a new direction with a new

wavelength [35].

Simulating trillions of fog water particles and the corre-

sponding light rays as well as their interactions is, while

possible, terribly time consuming. Instead, one can assume

that every light ray passes through a fixed number of fog

particles per distance traveled, depending on the fog density.

Additionally, different fog densities could occur in the 3D

space.

While travelling through the fog, a certain amount of light

is absorbed or scattered – thus extincted and therefore not

reaching the observer’s eye. This phenomenon can be very

simply described by

It = Iie
−αext d (4)

where It denotes the intensity of the light reaching the

observer, Ii the incident light intensity, αext ([m−1]) an

extinction factor and d ([m]) the distance the light travels

through the fog.

Very simple extinction can be tied to the meteorological

measure of visibility V as the distance a human can distin-

guish between a black object and the sky [36]:

0.05 = e−αextV , (5a)

αext ≈
3

V
. (5b)

The value of 0.05 is often assumed to be the contrast

threshold a human observer has in this scenario. With this

simple formula a given visibility (distance) can be chosen

and the appropriate extinction coefficient can be calculated.

Given an image and a sky color Is, each pixel with depth d

is then assigned its new color

I = Iie
−αext d + Is(1− e−αext d). (6)

B. Mie Scattering

While this basic blending with a fog color results in pre-

sentable images [21], real fog affects every light wavelength

(λ , [nm]) differently instead of applying the same effects on

all three RGB channels.

More specifically, each image color channel gets extincted

according to its own special αext , depending on fog particle

radius (r [µm]) and concentration in the air (d [µm−3]). This

is covered by the Mie theory [37] (which would also apply

to snow if we examined the extinction of infrared light [38]).

The extinction efficiency for each wavelength Qe is a

function of x= 2πr/λ and translates directly to the extinction

coefficient

αext = Qe(x) ·πr2d. [m−1] (7)

C. Rendering Fog

Using the work of Wang and Jacques [39], we are able

to calculate the necessary αext for each of the R, G and B

channel, assuming corresponding wavelengths of 650, 550

and 450nm. In the shaders attached to the environmental

scenes these values are then combined with the distance

of each pixel to the camera. The pixel colors are blended

accordingly with the color of the sky.

One could also just apply those steps on an image directly

without using OpenGL scenes, but since we already are

in fragment space we can just as well utilize the massive

parallelity of graphics cards for this task.

V. RESULTS

As a first quality assessment we took a series of photos

of a scene containing a road and diverse depth during snowy

weather. With an array of two cameras fixed to a metal profile

bar – the cameras have been calibrated and all parameters

for stereo imaging calculated – these photos could then

be used to extract the depth of the scene. During autumn

many images with diverse fog densities were taken. Over

the course of the winter an additional data set of images

with various snow intensities and wind directions as well as

light situations was formed.



(a) Real Snow (b) Simulated Snow

Fig. 3. Visual comparison of real and simulated snow flakes. The images
on the left were taken during snowy weather, on the right snow was added
on images that were taken on days without any snow fall.

A. Comparison

In Fig. 3 we compare real snow flakes found on our images

to flakes that were simulated onto images without any snow.

While it was not only possible to recreate the general look of

a snowy scene, we could also imitate single snowflakes and

infer snow falling speed and flake size during this process.

Even the combination of falling speed and crosswind speed

could be determined only by manually approximating the

synthetic image to the real image. Conversely, the simulated

images share striking resemblance with the real images.

Reproducing foggy scenes from real images is more

difficult as the images’ white balance, lighting conditions

and time of day have to match exactly. This lead to no exact

match between our real fog images and images without any

fog. Therefore we show an example from the Cityscapes data

set on which we applied our fog (Fig. 4). Objects with greater

distance to the camera are clearly faded to a larger extend

than closer objects. Because even tiny imperfections in the

depth map cause the generated fog to have very visible bright

or dark spots, the quality of those maps is critical. Until depth

maps improve fog simulation will be inconsistent.

B. Evaluation

To evaluate the impact of our simulated weather envi-

ronment on state-of-the-art object detection we conducted a

series of experiments. Using Recurrent Rolling Convolution

(RRC) as introduced by Ren et al. [40], we chose a random

subset (468 images which were not used for training) of the

KITTI image data set [5] and examined the object detection

average precision. Varying both the snow fall rate and the

fog density automatically we created 69 different derived

image sets and used the RRC to detect all trained objects.

Fig. 4. The upper image is from the Cityscapes image data set, the lower
figure shows that image with our fog applied. Distant objects are harder to
spot than closer ones, as they are affected more by the fog.

Fig. 5. CNN average detection precision which changes under the influence
of our simulated snow and fog. With both increasing fog density and snow
fall rate the average detection precision plummets from 70.5% to 3.7%. The
plotted surface is interpolated from 69 sampled points.

Fig. 5 shows the significant loss of average precision with

increasingly strong weather influences. Especially growing

fog densities had a mayor impact on the detection rates,

reducing average precision by 94.8%. Although the CNN is

placed seventh in the KITTI object detection benchmark (as

of April ’19) we observe a huge drop in average recognition

precision. This shows that CNNs would greatly benefit from

training against those augmented images.

VI. CONCLUSIONS

This paper has argued that conventional testing of au-

tonomous driving functions that are based on machine learn-

ing has reached the limit of feasibility due to the huge

financial effort and expenditure of time. We proposed a

new method to enhance existing image data sets with both

realistic and variable snow and fog. The realism necessary

to imitate adverse weather conditions for optical sensors

was show by comparing real snow images with the ones

our framework created. Object recognition rates were sig-



nificantly reduced when applying the weather effects on the

images before the recognition process started. The insights

gained from this experiments may lead to improved machine

learning algorithms as their training data sets can be aug-

mented with our methods. This aspect is addressed by many

parallel research activities.

Next steps are going to include mounting a automotive-

qualified stereo camera to a test vehicle and collecting more

snow and fog data to compare to the simulated images.

Furthermore, the training and evaluation of neural networks

based on the newly created images might yield interesting

findings. Finally, improving existing data set’s depth maps

might come in handy for better fog generation.
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