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Abstract— Recent developments in the field of autonomous
cars indicate the appearance of those vehicles on the streets
of every city in the near future. This urban driving requires
zero error tolerance. In order to guarantee safety requirements
self-driving cars and the used software have to pass exhaustive
tests under as many different conditions as possible. The more
versatile the considered influences and the more thorough
the tests made under those influences, the safer the car will
drive under real conditions. Unfortunately, it is very time and
resource intensive to record the same test set of images over
and over again, every time producing, or hoping for, specific
conditions; especially when using real test vehicles. This is
where environment simulation comes into play.

This research investigates the simulation of environmental
influences which may affect the sensors used in autonomous
vehicles, in particular how raindrops resting on a windshield
affect cameras as they may occlude large parts of the field of
view. We propose a novel method to render these raindrops
using Continuous Nearest Neighbor search leveraging the ben-
efits of R-trees. The 3D scene in front of the camera, which
is generated from stereo images, reflects physically correct in
these drops. This leads to near photo-realistic simulated results.
The derived images may be used to extend the training data
sets used for machine learning without being forced to capture
new real pictures.

I. INTRODUCTION

Self-driving cars are going to keep researchers and manu-

facturers all over the world occupied for a long time. This is

because autonomous cars might dominate the public trans-

port in the future, and to do so they have to be thoroughly

verified. Unimaginable what could happen if a critical system

like vehicle or pedestrian detection did not undergo the most

comprehensive tests, covering every environmental influence

imaginable and every possible combination of those – say,

light rain on an overcast day at noon with back light and a

soiled camera lens.

To hope to randomly encounter all of these condition

combinations on test drives or even to plan for them to

happen would be foolish. Additionally, according to analysts

a car which carries all the tech to be tested would have to

drive in the order of 109 km without an error to be qualified

for ISO 26262 [1]. Furthermore, every time any part of the

vehicle receives an update, all the tests are required to rerun.

So one of the main challenges faced by many manufac-

turers is the time intensive testing, especially the dispatching

of a swarm of test drivers in prototype cars. One possible

solution is to capture one relatively short drive and use this
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recording to generate a multitude of versions by simulating

many different combinations of environmental influences.

While some research has been carried out on physically

correct simulations of those environmental influences, the

pool of unexplored weather conditions and effects is still

large. Our own investigation lead to the conclusion that

falling rain, when not extremely violent, does not affect

algorithms like object or traffic sign detection. Therefore this

paper investigates the rendering of raindrops resting on a

windshield in front of the camera or the camera lens and the

effects of these on object recognition algorithms, as those

drops may obstruct huge parts of the visual field.

The first section of this paper will examine other research

that focused on simulating influences like rain and dust in

front of and on cameras. The second section is concerned

with the drop generation, beginning at the scene reconstruc-

tion and ending with our method of ray tracing. After that

the third section presents results and applications. In section

four we discuss the findings and propose future work that

would improve performance as well as realism.

II. RELATED WORK

Most research related to weather and environment simula-

tion is focused on usage in games or rendering of synthetic

scenes. Only few contributions take physical correctness into

account. Until now, none of the works examined the effects

of raindrops resting in front of the camera but described

water drops very accurately in other contexts.

The work of Starik and Werman uses the assumption

that the 3D-scene has the same depth everywhere [2]. They

extract characteristics of rain in videos and apply the learned

mask onto images without rain. Therefore they ignore the

physical properties of a single raindrop.

Better results are possible when considering the exact

depth of the scene, extracted from disparity maps [3], [4].

This is possible because the authors use stereo cameras when

capturing their videos. They divide the space between the

camera and the objects into small parts, calculate the correct

amount of rain in these parts and render the raindrops in

OpenGL. Hospach and Müller propose to treat the falling

raindrops as very thin triangles, color them white and apply

alpha blending according to the rain intensity. This trick

allows for fast graphics card supported rendering. Because

not needed – the differences would be minimal – they ignore

effects like refraction.

Wang et al. use ray tracing to render the raindrops, but rely

on the knowledge of the light source’s exact position [5].
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The authors shoot rays from the light source to all of the

raindrops and calculate the pixel color according to the

Phong illumination model. Objects that do not emit light

are left out and will not refract in the raindrops.

One of the most similar works compared to this paper

assumed a lot of simplifications in order to satisfy real time

constraints [6]. The authors map the video image onto a

single hemisphere in front of the camera, regardless of the

real distance of the object to the camera. They then cast

rays through each of the pixels occupied by raindrops and

check, where in the hemisphere these rays hit the image.

The corresponding pixel values are then used as texels when

rendering the drops.

Many researchers investigating raindrops on a windshield

have focused on the positioning, merging and moving of

those. Different works concentrate on simulating fluid dy-

namics [7]–[11]. Extrand et al. examine the shape of water

drops resting on inclined surfaces like glass plates [12]. More

studies regarding the shape of falling water drops were made

by Garg and Nayar [13]. Additionally they go out of their

way to perfectly describe physical and optical properties

of water drops [14]. A completely different approach was

made by different researchers as they detect and remove

raindrops in images instead of creating them [15], [16]. Much

can be learned from the methods to remove the drops, as

the described methods take advantage of some interesting

physical properties.

Previously published studies are all limited to single as-

pects of raindrops, resting and falling, but neglect to consider

the environment of the camera as 3D-scene. Either they

ignore depth altogether or make broad assumptions, as well

as overlook correct refraction of the scene objects in the

water drops. Our approach takes all this into account. The

results are near photo-realistic which is desired for training

data sets that will be fed to neural networks.

Regarding rendering of point clouds there are many dif-

ferent existing methods. One is to create a mesh representing

the surfaces and mapping images as textures onto them [17].

Others use heavy preprocessing to create multiple depth

maps and refine the render step by step [18]. But even when

meshing would be simple and cheap we would have to fill

gaps that appear behind objects like trees or cars. If not fixed,

those gaps could result in black areas in the drops as they

might refract rays into those normally invisible areas.

Schaufler and Jensen shoot rays into the point cloud and

search for point densities above a certain threshold [19].

There all points within a range are used for interpolation

of surface normal and position. That way they avoid costly

3D reconstruction. Unfortunately holes in the surface may

appear if not enough points are available or are not sampled

densely enough. These holes would manifest as black areas

and occur especially near edges of objects with very different

depths, for example when looking at a traffic sign in front

of the sky.

Another method for finding the nearest neighbor for a

line segment was proposed by Adnoni et al. [20]. They use

approximations when searching in high dimensions. This

does not necessarily apply to our use case and involves

complicated data structures that go too far for our three

dimensions.

None of the works mentioned above combine both realistic

rendering of raindrops, finding the corresponding objects

in the scene without costly reconstructing the scene and

checking the results with state of the art object detection

algorithms. This paper will do all of the above and show

that additionally training neural nets with modified pictures

might give the edge to modern object recognition.

III. DROP GENERATION

To render the drops while accounting for refraction of

objects in the scene it has to be reproduced in 3D as a

point cloud. This process requires knowledge of the depth

of the scene. A depth map, assigning each pixel its distance

from the camera, may be calculated using epipolar geometry

(resulting in a disparity map which corresponds to depth) or

utilizing LiDAR or other sensors.

After the scene is calculated the raindrops on the wind-

shield have to be modeled. We settled for a simple but

powerful abstraction: every drop is represented by a sphere

which is cut off by the windshield (a plane). This results in

a sphere cap, a geometrically easy to handle object.

Then rays are cast through every image pixel covered by

a drop and are refracted in those. The resulting rays are sent

into the scene and the nearest neighbor in the point cloud

is searched. This point’s color contributes to the pixel color

of the drop. Searching the nearest neighbor of a single point

in a group of up to two million points might be trivial and

fast, the same search with respect to a line in the search

space makes it very exhausting. Only the use of Continuous

Nearest Neighbour Search made this approach feasible.

A. Scene Reconstruction

The first step is the 3D-reconstruction of the scene in front

of the camera. When working with images from (calibrated)

stereo cameras it is possible to calculate the distance from

the camera for each pixel using stereo reconstruction [21].

Other methods may include an extra sensor like LiDAR to

capture the depth.

We are working with images from the Cityscapes

Dataset [22]. It consists of several thousand pictures con-

taining all kinds of street scenes, was captured using stereo

cameras and ships with precomputed disparity maps. These

can easily be converted into depth maps. Invalid depth values

– results from pixels that could not be matched in the

process above or were excluded on purpose – are assigned

the maximum occurring valid depth.

Another source of images with corresponding depth maps

used by us is the VIRES Virtual Test Drive software [23].

The depth maps are very exact because they are based on

ground truth data. Additionally custom scenarios may be

built very quickly using cars (user or computer controlled),

pedestrians and other obstacles.

Our source of images used for object detection is the

KITTI data set [24]. It contains stereo images, ground truth
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Fig. 1. Point cloud resulting from our 3D reconstruction. The source image
may be seen in Fig. 5 as background. Zoomed in to the area close in front
of the ego vehicle. The cars left and in front of the car as well as the road
and its marks are clearly visible.

for objects and intrinsic and extrinsic camera parameters.

Depth maps had to be calculated using the OpenCV imple-

mentation of Hirschmüller’s matching algorithm [25].

Combining depth and color information we position the

camera on 3D-position c= (0,0,0)T looking at (0,0,1)T and

create vectors pointing from c to every pixel in the image

plane. The x-axis points right, the y-axis down and the z-axis

into the scene. The image plane gets centered on the z-axis.

Its z-value may be calculated from the image pixel height h

and the cameras vertical field of view fovv as

zimage plane = 0.5 ·h · tan(fovv/2) . (1)

We then convert all values from pixel to meter using the

size of one physical pixel on the image sensor of the camera.

Then all pixel vectors get normalized and scaled until they

have a length matching the values of the depth map. The

points may then be rotated about the x-axis to account for

pitched cameras. The result – a 3D point cloud consisting of

all pixels – is shown in Fig. 1. These points will represent

the objects in the scene when rendering the raindrops.

B. Drop Model

Once the 3D representation is done, it is necessary to

create and distribute the raindrops on the virtual windshield.

A single drop is modeled as sphere cap. This cap is charac-

terized by its center~c, radius r, height and normal~n (pointing

from the base to the dome). Generating drops means to set

a fixed z-value (the distance from camera to windshield),

randomly or deliberately set x- and y-coordinates, height

and radius for each drop. As height and radius correlate

one value might be derived from the other [26]. We chose

h = tan(θ/2) · d, where h denotes the drop height, θ the

contact angle of the drop and d the drop diameter. Contact

angles θ were determined to be around 87◦ when looking

at drops with radii in the order of 2 mm by Park et al. [27].

Respective normals simply point in the same direction as

the camera view vector does. When tilting the windshield

forward, all drop centers and normals are rotated about the

x-axis, too.

~n

windshield

← camera

r

~c

scene →

Fig. 2. Model of all refraction steps happening in every raindrop for every
ray. Shows refraction (solid rays) and total internal reflection (dashed rays).
The reflected rays account for the dark portion on top of the drops, hitting
the road. Our model ignores secondary reflections, exchanging minor color
changes in the top region of the drop in favor for vast speed impromevents.

C. Refraction

Prior to refracting the scene in the drops we shoot rays

from the camera to each pixel in the image plane. To reduce

the computational work only rays hitting the back of a drop

– a circle with center, radius and normal – are tracked. All

other rays are discarded and the pixel values from the original

image get used for the result image.

After hitting the back of the drop, we refract the ray

according to Snell’s law. For more information on refraction

see established literature [28]. The refracted ray is now inside

the drop and about to exit it somewhere on the cap’s surface.

We then calculate the sphere’s center – the sphere which

the cap originates from – by generating random vectors that

are perpendicular to the normal and as long as the drop

radius. These lay in the windshield plane. Together with

the normal scaled to radius length we now have four points

which lay on the sphere. Those are sufficient to calculate the

sphere’s center [29].

Now it is possible to find the point where our ray will

leave the sphere [30]. Connecting this point with the sphere

center results in the surface normal needed for the second

refraction. In case of a total internal reflection the resulting

ray does not get refracted any further. A visual representation

of every refraction may be found in Fig. 2.

D. Nearest Neighbor Search

Next we are going to calculate what objects our rays

come closest to in order to defer the pixel colors that rays

correspond to. For that we continue with the search for

the nearest neighbor (NN) for each ray in the point cloud

generated in section III-A. That point’s color will be assigned

to the respective pixel and be visible in the drop.

A very naı̈ve attempt for finding the NN is to look at every

point for every ray, calculate the distance from point to ray

and take the closest one. Even after organizing the points in

R-trees, which allow for fast NN queries, sampling the ray

and searching the NN for each sample, the search takes very

long for even small images, not to mention the 2000×1000

pixel images from Cityscapes. For more details on how we

sampled the ray see the appendix.
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Fig. 3. Illustration of the z-value problem. When a ray should not be
closest to a foreground object (here: traffic sign, distance dt to the ray) but
closest to a background object (here: sky 3D point, part of the background,
distance ds). This happens because further away objects have their points
spread out more than closer objects, are shot “through” and therefore are
ignored in the NN search.

Finally we chose Continuous Nearest Neighbor search [31]

as it not only provides an exact nearest neighbor but does so

in very short time (mere milliseconds) in large point clouds

containing more than two million points. In preparation for

the search all points are stored in a R-tree. Then the ray gets

cut off at the planes with z = 0 and z = zmax (maximum z-

coordinate of all points). The resulting line segments serve

as input for the Continuous NN algorithm. It starts with

initializing a “split list” (SL), which in the beginning contains

the start and end point of a ray. Then the R-tree gets traversed

depth first. Whenever a bounding volume lies closer to a

split list element than its previous nearest neighbor (for more

algebraic details on how to do this see [32]) it is put on a

stack for further investigation. As the traversal comes across

a point, the same check is made. If it lies closer to any point

in the split list than that point’s previous NN, that point and

relevant SL neighbors are getting updated, new SL points

are inserted or obsolete ones removed. As soon as the stack

is empty, the SL entry which has the smallest NN distance

gets chosen – it contains the NN of the whole ray.

Utilizing additional smart heuristics (which may be

looked-up in the original paper [31]) a huge portion of the

points may be ignored and NN search is blazing fast.

Because of a phenomenon displayed in Fig. 3, the z-value

problem, we had to adapt the Continuous NN algorithm to

our use case. When a ray barely misses an object in the

3D space, for example a traffic sign, it may be closer to

that object than to the background, say, a pixel in the sky.

This leads to frayed edges when not countered. To counteract

on this problem we divide all distances in the SL by its

corresponding z-value. Close NN are penalized by this and

have to be really close to the ray in order to count as a hit.

IV. RESULTS

In order to evaluate the quality of our ray tracing algo-

rithm we rendered scenes completely, ignoring raindrops and

shooting rays through every pixel. This allows for detailed er-

ror detection. A difference image, resulting from subtraction

the images and taking the absolute value, scaled by factor

four for visibility, may be found in Fig. 4. The brighter

Fig. 4. Difference between the original image (see background in Fig. 5)
and a complete render using our ray tracing algorithm in combination with
the 3D reconstructed scene. The image shows the absolute difference of the
two images, scaled by factor four to improve visibility. The only significant
differences may be observed at the edges of two objects with clear depth
disparity. Other minor changes may be traced back to depth map generation
errors. The PSNR is 30.5 dB.

Fig. 5. Example image from the Cityscapes data set with rendered
raindrops. The windshield was placed 30 cm in front of the camera and tilted
to 27◦ from the horizontal. The drop radii have their mean at r = 1.5mm
and a standard deviation of σ = 0.4mm. The raindrops were convoluted
with a disk kernel to simulate out of focus effects [33].

a pixel the higher the difference between the two images.

Clearly the edges separating object of different depth show

the largest discrepancy. This is due to the aforementioned z-

value problem but by far better than without our correction

for it.

As example for a render with raindrops we took an image

from the Cityscapes data set, generated random drops and

rendered those. The result may be found in Fig. 5.

To test the behavior of object recognition algorithms we

applied our drop generation to one of the top ranked neural

networks on the KITTI data set. One could expect that large

raindrops might occlude small objects like pedestrians or

mask parts of vehicles in ways that could confuse neural

nets that were trained on perfect images.

The network we used was the Recurrent Rolling Convolu-

tion (RRC) network, which is a single stage object detection

network [34]. It is currently ranked fourth place on the KITTI

data set. We reconstructed the 3D scenes for the KITTI data

set from 450 given stereo images with the corresponding

camera parameters to then simulate the raindrops. Those

images served as input for RRC network. As control group

we use the same images without raindrops. An overview of

this process may be found in Fig 6.
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source images 3D reconstruction rendered raindrops

ground truthevaluation of object detection

(KITTI, Cityscapes, stereo camera)

Fig. 6. Pipeline for our object recognition evaluation. We take stereo images
as input (from the KITTI data set), calculate the depth for each pixel, then
reconstruct the 3D scene and render the raindrops. After that we run object
detection on those images with raindrops and compare the results with the
ground truth.

TABLE I

RESULTS FROM OUR OBJECT DETECTION TEST

Overall mAP Overall AA

Original KITTI images 81.79 % 89.23 %
KITTI images with drops 80.61 % 88.86 %
Decrease due to artificial drops 1.18 % 0.37 %

mAP Cars mAP Ped.

Original KITTI images 85.78 % 55.20 %
KITTI images with drops 84.92 % 51.20 %
Decrease due to artifficial drops 0.86 % 4.00 %

We evaluated the results by calculating the measured aver-

age precision (mAP) as used in [35]. For this the intersection

over union metric for predicted and ground truth bounding

boxes gets calculated. If the overlap of those boxes is greater

than the specified threshold of 70 % the detection counts as

true positive (TP).

Additionally we evaluate the average accuracy (AA), also

known from [35]. Here the accuracy of the detection is

evaluated by AA = TP/(FP + TP) where FP denotes the

number of false positives. Our change to the evaluation

of [35] is that we only count object detections as TP if

the overlap of predicted and ground truth bounding box is

greater than 70 % instead of the proposed 50 %. We also

do not distinguish between different classes and don’t use

a lower pedestrian threshold of 50 % like suggested in [36].

Duplicate detections are counted as FP.

The results in table I show that the overall mAP decreases

by 1.18 % as well as the overall average accuracy decreases

by 0.37 % when raindrops are present in the images. Fur-

thermore, we see that smaller objects like pedestrians are

more vulnerable to occlusion by raindrops (decrease of 4 %

in mAP) than bigger objects like cars. In a time where the

top neural nets lie fractions of a percent apart regarding

recognition rate, even smallest improvements as additionally

training with our rainy images might give one the edge over

the others.

V. CONCLUSIONS

This study set out to artificially create raindrops based on

only a pair of stereo images. Physically correct refraction

and reflection were included in our model as well as some

simplifications that allowed for faster development. Never-

theless, the results are notable. We achieved photo realistic

drops on a pitched windshield that reveal the whole range of

objects behind them. Although being represented by sphere

caps, our drops look lifelike.

Our ray tracing method produces near perfect renders of a

3D scene represented by a point cloud containing millions of

points in acceptable time without costly precomputation of

meshes and textures. Even thin and small objects like traffic

signs do not get lost in the entirety of the scene; letters in

license plates are readable. This all is possible while the 3D

scene reconstruction relies on feature matching and disparity

maps with discrete values.

Neural networks dealing with object detection that are

additionally trained with images that are prepared with

raindrops could achieve better results and surpass other

competitors. This work could lead to better overall scores and

robustness regarding sensor flaws for those machine learning

algorithms.

To this date, our Continuous NN-search runs on up to

8 CPU cores (this is the highest number of threads our CPU,

an Intel i7-7700K, provides). There, run times of about 3 min

per KITTI image were achieved while rendering relatively

large and many drops. The smaller and fewer the drops

the faster the computation as we only trace rays that hit

drops. Because the search is highly parallelizable one could

implement the R-tree for GPU memory usage and leverage

the power of graphics cards. This would be rewarded by

vastly shorter execution times in the order of milliseconds

per image.

An interesting application of this algorithm might be to

use an image generated with it as input for the work of

Iseringhausen et al. [37]. They use water drops on a glass

plate in front of a scene as light field camera, because the

drops act as multiple lenses in different positions. After

reverse engineering the drop shapes they infer the scene

behind the class plate and are able to create 3D renders from

different perspectives. Our work represents the reverse – we

infer the raindrops from our knowledge of the scene.

APPENDIX

To find the NN of a ray in a point cloud we first tried to

sample the ray and find the NN for every sample point, in

the end collecting the one with the smallest distance. This is

how we sampled the ray.

Our point cloud is generated by looking at the disparity of

every pixel in the images from a stereo camera. The disparity,

standing for the pixel distance a feature has from one image

to the other, is an integer ranging from 0 (feature did not

move between the images, it is very distant) to “width of

image” (feature did move from the left to the right side

of the image, therefore is very close to the camera). This

leads to discrete depth values and layers in which each set
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of pixels with equal disparity (and therefore equal depth) lies.

We sampled our rays on each intersection with one of those

depth layers. That way we assured that each sample point

finds its NN on its layer, if possible. To accelerate rendering

we even tested sub-sampling the ray, but that resulted in large

patches of e.g. sky to have the same color.
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