
enerDAG – Towards a DLT-based

Local Energy Trading Platform

Christoph Groß1 Mark Schwed1 Stefan Mueller1 Oliver Bringmann1

Abstract—Due to decreasing costs and less by-effects of renew-
ables energy the energy production is getting more and more
decentralized and therefore leads to more bottom-up loads on
the grid. To reduce the stress on the grid local energy grids
with smart energy trading are a possible solution. This paper
describes the goals and concept of our flexible resilient local
energy trading platform called enerDAG and how it can easily
be extended through smart contracts. At the end enerDAG gets
critically analyzed if it solves the critical requirements for a
scalable smart grid platform. Nodes using this platform can get
a financial advantage through cheaper local energy which might
also lead to even more investment in own regenerative energy
systems.

Index Terms—Smart Energy, Smart Grids, Smart Contracts,
Tangle, Distributed Ledger Technologies, Embedded Systems,
Efficiency

I. INTRODUCTION

The energy market is currently facing a change from

big centralized and mostly fossil energy producers to more

distributed and decentralized prosumers. This is accelerated

through forced reduction of carbon emissions and the nuclear

phase-out and hence opening up new opportunities in energy

trading [1], [2]. Due to the nature of electricity needing to

be consumed when it is produced to ensure the network

stability, locally traded electricity can bring advantages for

local participants and grid operators even though the reality is

currently still looking different.

When installing a photovoltaic system on a roof there are

only two options: consuming as much energy as possible or

selling it to the local energy provider. The current remu-

neration for the sale of electricity is significantly below the

purchase price in most cases. Therefore, a valid question is

why it is not possible to sell overproduced electricity directly

to neighbors at a price between the purchase and sales price.

This results in several positive effects: Not only is the energy

consumed where it is produced and relieves the high voltage

transport networks. But this also creates an incentive to invest

in renewable energies. Finally, energy suppliers can counteract

blackouts by providing targeted incentives in the form of price

changes.

With more and more photovoltaic and biogas plants added

to the power grid, the grid becomes even more decentralized

making it even harder for the energy providers to handle. This

is especially apparent when at sunny times all photovoltaic

1University of Tübingen, Faculty of Science, Department of Computer
Science, Embedded Systems Group

This work was partially supported by the state of Baden-Württemberg
(project number BWSGD 18011).

system produce simultaneously at high rates; when the sun

now is covered by some clouds, the energy flow just stops

abruptly.

The idea of the neighborhood contract is to be able to trade

energy with neighbors. The neighborhood is defined as the

lowest level of connections in the energy network (at the 230V
level behind the local transformer station) because this allows

for the lowest costs of energy transportation. So on average

we are talking about 100 to 150 households that will be able

to communicate with each other [3]. The challenge here is the

low energy consumption of individual households. As a result,

one transaction covering 15 minutes has an average value of

less than 10 cents.

In this paper we set out to solve the problem of making

a distributed, scalable and energy efficient local smart grids

for the neighborhood. First we describe the current status and

why classic blockchain technology like Bitcoin or Ethereum

isn’t able to solve this and then how our solution of Smart

Contracts added to a special variant of a tangle can solve this.

II. RELATED WORK

Since the goal of our project is to create a distributed

local energy market we need a distributed database where

we can have thousands of writers and not all of them are

trusted. As a consequence we use distributed ledger technology

(DLT) similar to the Bitcoin blockchain [4] as our distributed

database. DLTs allow for a high throughput of data and a

consensus about which data is correct.

There exist multiple papers discussing for which specific use

case blockchains or more generally speaking DLTs are useful

[5]–[7]. Our decision is based on the desire for a decentralized

data structure that enforces every participant to keep up to date

and follow the rules. For our system we use the Tangle as the

underlying data structure.

The first bigger test field for local energy grids using

blockchain technology was the Brooklyn Microgrid [8]. Since

then multiple new projects have been testing blockchain-

like DLTs in small local test fields like the Swiss project

Quartierstrom [9]–[12] and in the “East Harbour Prosumer

Community” inside the European PARENT project [13], [14].

But classical blockchain solutions have the problem of needing

lots of energy if they are using Proof of Work (PoW), needing

to store lots of data for at least a big recent part of the

blockchain and everyone needs to have the completely same

state of the whole chain. A better scalability separates the

Tangle as a data structure from the classic blockchain.

Fig. 1. A tangle where every new node references two previous nodes

A. The Tangle Data Structure

The Tangle [15], [16] is a directed acyclic graph (DAG)

that consists of transactions and their references. Each node

can add transactions to the Tangle by following simple rules

to create a transaction e.g. by referencing at least two older

transactions called tips and then publishing it to its neighbors.

All other nodes will then receive the transaction through

the gossip protocol and will accept and include the received

transaction in their view of the Tangle structure. The Tangle is

a chronologically ordered data structure, as new transactions

can only reference older ones and do so for a specific time.

So over time the Tangle graph will grow into one direction as

you can see in figure II-A.

This means, the Tangle is like a blockchain without blocks

and without a chain and therefore overcomes a lot of the

problems like fees, mining, and limited transactions per second

from other DLTs. As the Tangle has a transaction flow with

time, this allows to delete old transactions to free disk space

as they will not be referenced in the far future and allows a

chronicle order to check which transaction came first for the

verifiability of transactions.

B. Smart Contracts in Distributed Ledgers

A smart contract is a computerized transaction protocol

that executes the terms of a contract without the need of

having a third party involved. The origin of this name and

the idea behind it was first developed by Szabo [17] and

further refined throughout the years [18]–[20]. This idea was

among others further improved by Buterin in [21]. The goal of

smart contracts are deterministic digitally executable contracts

without the overhead of written contracts like the interpretation

of a contract by a human but with at least the same security.

Additionally, it provides

• a reduction of transaction costs and involved third parties,

• improved speed and immutability, and

• self-enforcing contract clauses and easy contract checks.

But the name “smart contracts” can be misleading. They

are not smart in a sense that they adapt intelligently to

environmental changes. The contracts are smart in a sense

that they react to defined changes of their world, for example

executing after a specific time or saving the amount of money

different actors have sent to the smart contract in a state. They

can save data and act on that data with predefined rules. Smart

contracts also are no legal contracts. They should rather be

thought of as a programs that execute at certain conditions.

Using a distributed ledger like a blockchain or the Tangle

as the data structure of smart contracts leads to some special

attributes:

Immutability When a smart contract is saved on a distributed

ledger its source code is frozen to a specific address in the

ledger and can never be changed again. New versions of

a smart contract need to be saved on a different address.

This way it is ensured that no one can alter a smart

contract’s source code.

Open Source Knowing the address of a smart contract one

can read its code and in the best case simulate the

outcome of a specific action. There is no room for law

or contract interpretation by a human.

Decentralization Similar to the idea of a distributed ledger,

smart contracts are decentralized and get executed decen-

tralized. Therefore no trust in a single party with the result

or the execution time of a contract is necessary. Instead

the decentralized majority depending on the consensus

algorithm of the specific DLT decides on the outcome of

a smart contract.

C. Problems of Smart Contracts on a Tokenless Tangle

There are three requirements for smart contracts on dis-

tributed ledgers:

1) Byzantine-fault tolerant consensus algorithms that allow

for security through decentralization. This guarantees that

no single node tampers with the network by providing a

wrong smart contract result,

2) programming languages with some level of Turing com-

pleteness built into the blockchain to allow creation of

custom logic as smart contracts, and

3) a fee structure as an incentive for running other people’s

contracts on a owned node.

The consensus algorithm of a Proof of Work (PoW)

blockchain is done by miners and a lot of hashing power to

put a lot of transactions into a block and find the correct nonce

so that the hash of the block including the nonce starts with x
– set by the difficulty of the network – zeros. When a block

is mined, all other nodes can verify that this nonce is correct

and will add the block to their own blockchain. The issuer of

a new block will then be rewarded the fees of all transactions

included within his block and some additional (for example)

Bitcoin or Ethereum.

With Solidity, a Turing-complete programming language is

included in the Ethereum blockchain as the underlying idea of

Ethereum was to allow smart contracts. Bitcoin uses a scripting

language to publish smart contracts to allow the creation of

custom logic.

On blockchains smart contracts get executed because the

result of an execution is a transaction which can be included

in the next mined block. This alone provides an incentive of

fees. Furthermore, the execution of each line of contract code

is rewared with a fee; this way it is lucrative for miners to

execute contracts and include their results in the next block.

The problem with the Tangle data structure and smart

contract is obvious: the Tangle in its IOTA origin and in

enerDAG is feeless, there are no miners that try to achieve

the next block to receive a reward, and there is also no

programming language built into the Tangle. In addition, there

are more problems of smart contracts in a Tangle environment:

No built-in programming language To solve this problem

it is necessary to understand that within the idea of

enerDAG it is not required that participants can create

their own smart contract logic. They should not have

to write their own contracts themselves as it is error-

prone and highly technical. Households should rely on

templates or even execution-ready contracts provided by

a third party like a neighborhood maintainer.

The decision is to use private smart contracts and save

the code off-chain or off-Tangle. This means that each

node has their own copy of a smart contract they want

to participate in. As the contracts are written in simple

language they are still open source and readable by

anyone. Nodes can verify they have the same contract

by comparing a simple hash of the contract. Each node

can only change their own contracts which will possibly

lead to a different result when executing the contract but

only on this specific node.

When sharing the result with the network, nodes that

altered their contracts will just be a “normal” malicious

node trying to influence the contract’s result and will get

caught by the Byzantine-fault tolerant algorithms.

No fees Running anyone’s code costs money through the used

energy. To still trigger the interest in participating one

needs to have a financial benefit in doing so. There is no

advantage in forwarding a trade or an offer to others if

the exchange of energy is build on a first-come-first-serve

policy.

Additionally after the release of an offer, there would be

a flood of bidding transactions and all actors besides the

winner would still need to send more energy purchase

requests to elsewhere. Another aspect would be the

problem that nobody besides the two partners of that

energy exchange would want to invest enough energy

to recalculate the results of the smart contract which

could lead to malicious actors and an easy misuse of the

consensus algorithm.

To overcome these problems there we introduce the neigh-

borhood market contract in the form of partially centralized

markets.

III. METHOD

The Tangle idea we use for the system is inherited from

IOTA’s Tangle concept [15] but we make significant changes

to the IOTA protocol as for example our system has no tokens

(IOTAs) and we use a binary instead of a ternary system. For

the first concept study, we are trading in the past as we cannot

predict our production and usage of energy easily.

A centralized market can be set up as a smart contract that is

executed in fixed intervals, for example every 5 or 15 minutes.

Households that want to participate in the energy market in

a desired time frame send their energy balances and prices

for buying and selling to the smart contract. At the execution

time a market algorithm clears the market and the result of the

contract are the happening energy trades. A node benefits from

the smart contract if the following conditions are fulfilled:

• It participates with an offer in the time frame,

• the smart contract result is one where the nodes overpro-

duction / need is traded, and

• the result containing the trade gets accepted by the overall

network as the majority result.

To participate in the market a node needs to send a transac-

tion with their energy overproduction or needs and prices to

the central smart contract.

By definition the marketplace allows each node to send only

one transaction per time frame. This reduces the amount of

transactions to a minimum. The market algorithm of the smart

contract (that is explained in III-H) then matches buy and sell

offers. All Nodes have a financial incentive to calculate the

smart contract result if they take part in the smart contract

within the time frame. As this will be normal operation,

nodes will participate in the calculation and securing of the

result. The market is planned to span over a neighborhood

defined by a energy transformer station (because of transport

costs), containing about up to 150 participants within one

neighborhood smart contract.

For this reason it is acceptable if a node does not take part in

the smart contract caused by connection issues, exchanges, etc.

because a lot of participants will execute the result calculations

and a consensus mechanism will find the overall result. With

every node that takes part in a round of energy trading via

the smart contract there is an additional player that has an

incentive to behave correctly, calculate the correct result of

the market algorithm, and share it with his neighbors.

Due to enerDAG being a tokenless private decentralized

ledger system there are special tasks that must be carried out

reliably like validation and billing of energy flow. Therefore

energy or infrastructure providers can run a node within each

neighborhood that is called the neighborhood maintainer node.

A. Contract Composition

Smart contracts in the enerDAG system are stored on the

nodes that participate in the contract. Like any other node

in the network a contract is identified by its address. For

additional security in the field of contract immutability the

contracts address is its own SHA-256 hash. To interact with

a specific contract, transactions can be sent to the contract’s

address as receiverAddress in a transaction. The contract

itself is a program that is executed in a given interval.

A contract has two pre-defined functions: The

receiveTransaction(t) function is called when

a transaction with the contracts address is set as

receiverAddress. As parameter the function gets

the transaction itself, allowing the contract to process the

transaction. The executeContract() function is called

when the contract is executed at the specific times. The return

value is the contract’s result value that then gets sent to the

node itself for further processing and majority voting.

B. Contract Results and Majority Voting

When a node calculates the result of a smart contract that

is not “None”, it will try to verify this result with the network

to reach a consensus with the network. This could mean that

the node itself calculated the result wrong (maybe it missed

some transactions within the contract time frame because of

down time, loss of connection, etc.) and now wants to get the

correct result from other nodes. It could also mean that it has

the correct result and another node (maliciously intended or

not) does not have the correct result and the network then tries

to convince the other node to adapt the correct result.

The network has a majority requirement (2
3

by default) that

determines how many neighbor nodes of those that are online

at the time need to send the same result to convince the node

that this result is correct. Every time a node receives a contract

result from another nodes or itself, it checks if the contract is

present on the system before proceeding. It then hashes the

provided result and selects the previous result hashes from

the database using the contract address and contract date. The

resulting hashes are saved associated with their sender in the

database. The majority voting takes place between arrival of

the contract result and the database insertion.

Majority voting works as follows: If the first received

contract result is from another node, nothing is done. If the first

contract result is from the own node, it will be gossiped to all

neighbor nodes. If the received contract result does not change

the majority votes nothing is done. If the received contract

result does change the majority votes the node changes its

opinion or vote, saves the majority result as the contract result

and sends its updated view on the result to its neighbors. If the

received vote is from the own contract result calculation and

there is no majority yet on any result hash, the own calculated

contract result is saved as the contract result and sent to the

neighbor nodes.

This process of calculations, sharing of opinion, and re-

thinking the own opinion will eventually lead to a common

contract result within the network given a good network

neighbor structure, enough honest nodes, and some fast rounds

of contract result sharing.

C. Gossip Protocol

The transaction protocol is some kind of verified gossip

protocol. A node in the network creates a transaction and

sends it to its neighbors. The neighbors receive that transaction

but do not know who created the transaction. They check the

transaction for formal verification (see 2f in section III-H)

and if everything is correct, they save it to their own database

and forward it to their neighbors excluding the one they got

the transaction from. If a node receives an already known

transaction, nothing happens. This results is a snowball scheme

where a transaction is forwarded through the network of

neighbors as fast as possible. It is the neighborhood maintainer

node’s task to keep the network in a state where the gossip

protocol works and no two split neighborhoods or bottleneck

nodes are formed.

D. Sync State

When a node receives a transaction that refers to tips of the

Tangle which are not known, it saves the unknown transaction

in a separate list for a defined amount of seconds. If within

this time frame it receives the transaction from the majority of

online neighbors, it is assumed that the node is not up to date

with the Tangle and needs to be synced. It will then request the

missing tip from its neighbors. Upon receiving this transaction

from a neighbor, the node will then insert it into the database,

check if it knows the referred tips, and if not, also request

those.

Once the sync state is entered, a requested transaction needs

to be provided by only one neighbor to insert the response

into the database. This is fast and secure as the transactions

are requested and no contract functions are executed as part

of receiving requested transactions.

E. Neighborhood Market Contract

To buy and sell units of energy between the participants

there is a need for a marketplace where all offers and demands

are listed and cleared at the end of a time frame. This is

realized with a smart contract which connects all participants

from the neighborhood including producers, prosumers, and

consumers. Within a time frame everyone posts their energy

balances and buy and sell prices to the smart contract. During

execution of the contract, an algorithm define the trades

happening within the time frame and sends the result back

to the Tangle. This market deals with the fixed amounts of

produced and consumed energy of the last time frame, which

eliminates the need to make any assumptions on the future

energy balances. The design goals of the neighborhood market

are:

Anonymity & Pseudonymity Nodes should be able to stay

anonymous to prevent the creation of energy profile by

another household. One exception is the neighborhood

maintainer node which must be able to identify them for

controlling purpose.

Security Only members of the defined neighborhood can

participate in the market or even read the transactions.

The neighborhood maintainer node should be able to

allow nodes for trading as well as stop nodes from

participation in the market.

Correctness Each household should be able to post their

energy balance once within a time frame and set their

buy and sell price as they wish. The market algorithm

should be one that incentives the participation in the

neighborhood market and correct behavior.

Fairness No node should be able to gain an advantage by

behaving in a special way like waiting for all bids and

sending last.

F. Bid and Clearing Prices

Following the Quartierstrom project [9]–[11], the idea of a

market clearing algorithm based on a double auction mech-

anism was adopted. Each participant sends the following

information to the market:

energyBalance Positive, if in the given time frame more

energy was produced than consumed by the household

maxBuyPrice A maximum price in ct/kWh that the node is

willing to pay for energy

minSellPrice A minimum price in ct/kWh that the node is

willing to sell its energy for

After receiving all energyBalances and prices, the

market is then cleared. For that, the algorithm searches the

positive energy balance with the lowest minSellPrice and

the negative energy balance with the highest maxBuyPrice.

The amount of energy traded is either until all is sold from

the seller or until the needs of the buyer are satisfied. The

price of the trade is set as the mean of maxBuyPrice

and minSellPrice. This leads to both buyer and seller

having the same advantage from the trade and encourages all

households to set a low sell price and a high buy price.

G. Authenticity and Correctness of Bids

To ensure a fair and smooth process, trading is divided

into multiple phases, which is explained in detail in the next

subsection III-H. In the first phase, consumption and prices are

encrypted by the participants and transmitted to the market af-

ter a random waiting period. To authenticate this information,

it is signed with a hash of a unique validationSeed and

the current contractTime. This hash can be compared to

a list of valid hashes which is distributed by the maintainer

node M regularly. This also allows to block malicious nodes

by sending a block list, excluding them from future lists and

investigating their wrong doings through the neighborhood

node. This offers a spam protection because the market accepts

hashes only once and also prevents malicious nodes from

placing multiple offers to gain a undue advantage:

1) Once at startup neighborhood maintainer node M gen-

erates validationSeeds S1, . . . , Sn and sends Si to

each node Ni with n being the amount of nodes in this

neighborhood.

2) The maintainer node then regularly (e.g. daily) publishes

a list containing the sub lists of the o included time

slots LT1...To
which is decryptable for each participant

of this neighborhood. Each sublist LTy
is constructed the

following way with H being the SHA256 hash function:

LTy
= {H(H(S1 + Ty)), . . . , H(H(Sn + Ty, . . .))}

The order of S1, . . . , Sn is randomized to reduce the

retracability from a doubly hashed value to a specific

node

3) Now each node calculates the validationKey =
H(S1 + Ty) for each time slot and appends it to its

bidding. Other nodes now check later if the once more

hashed validationKey exists in the list LTy
of this

time slot.

H. Neighborhood Market Algorithm

The neighborhood market algorithm fulfills the above men-

tioned goals in section III-E. The bidding part smart contract

SCB and the receiving and execution of the neighborhood

market smart contract SCR&E are both done by all partici-

pants. So all of them will compute their result by collecting

encrypted bids and decryption keys before running the market

algorithm, sharing the results, and doing majority voting.

Each node needs to have the following information for

its neighborhood: the smart contract addresses it uses, the

symmetric key, and its own valdidationSeed for this

neighborhood. Since everyone can read all transactions on the

Tangle we are using a key to encrypt all messages within a

neighborhood. Only the nodes of this neighborhood and the

neighborhood maintainer node know it.

Figure 2 shows that the second and third thirds of a the

time frame are saved for the neighborhood market contract

and how they look separated in phases. The first period is

reserved for the chaining of the last time frame results (as

described in section III-I) and possible later use in for example

an apartment house contract.

1) Phase 1 The events inside Phase 1 happen in the blue

parts of Fig. 2. Each node has a random timer so that the

messages are evenly distributed and spikes are reduced.

a) Every node checks if the result of a previous market

execution hash has already been posted to the Tangle

and matches it to its own previousResult based

on the majority voting and calculations. If the result is

accepted the previous trades are seen as final, else it

shares its own result.

b) Following this the new bid is created with time frame,

energyBalance, maxBuyPrice, minSellPrice, and the

validationKey. It is then encrypted with a newly

generated symmetric key.

c) The message is then encrypted with the neighbor-

hood symmetric key, put into the normal transac-

tion structure, and then sent to the Tangle using

the neighborhood market contract’s address as the

receiverAddress.

d) Upon receiving encrypted bids, nodes decrypt the outer

layer using the neighborhood symmetric key and then

conduct some check like if the arrival time is still

within Phase 1.

2) Phase 2 In the second phase no more bids are accepted

by the market. The nodes have to send the encryption key

for their information sent in the first phase. The actions of

Phase 2 happen during the orange time frame of Fig. 2.

e) The symmetric key generated in Phase 1 is now

added to a message, encrypted with the neighbor-

hood key, and then sent to the Tangle from the same

senderAddress as the encrypted bid before.

f) Upon receiving a decryption key, nodes decrypt the

outer layer and perform time checks. Then they check

if the arrival time is within the bounds of Phase 2

and if they received an encryptedBid in Phase 1

Fig. 2. Phases inside a 5 minutes trading period

with the same senderAddress as the decryption

key. If they find a match, they decrypt it and then run

several checks: (1) Is the bid’s time frame matching

the execution time frame of the contract (so it is no

old bid), (2) is the hash(validationKey) used

also in the hashedValidationKeys list provided

by the neighborhood maintainer node, and (3) has the

validationKey never been used before? If any

check fails, the bid is dropped.

3) Contract Execution

g) For neighborhood contract execution the algorithm

loops through all decrypted bids looking if there is

at least one positive energy balance for selling and a

negative energy balance for buying. As long as there

is, the trading loop is run.

h) The best buyers – with maximum buy price – and the

best sellers – with minimal sell price – are searched

within all bids. Those can be multiple participants

using the same maxBuyPrice or minSellPrice. These

are the participants of the first round of trades.

i) To be “fair”, all traded values will be split equally

between same price sellers and same price buyers. First

it is checked if in this round there is more energy to

sell or more demand:

• If more energy could be sold than bought, the total

energy amount to buy is calculated and divided on

all best sellers of that round. If a seller reaches its

energy balance with such a trade, the remaining

volume is again divided on all other best sellers.

• If more energy could be bought than sold, the total

energy amount to sell is calculated and divided on

all best buyers of that round. If a buyer reaches

its energy balance with such a trade, the remaining

volume is again divided on all other best buyers.

j) These steps are repeated as long as there is still energy

left to sell and to buy.

I. Chaining the Results in the Tangle

In the third phase the result of the second phase, which is

composed of decryptedBids, previousResultHash,

previousResultTransactionHash, and the trades, is

chained into the Tangle. This works by sending it into majority

voting as described in section III-B and takes place after phase

2 until the phase 1 of the next trading period starts.

It could also occur that a node sends the wrong

previousResultHash maliciously or because its majority

voting did not work well. In that case, there may be multiple

previous results in the Tangle for a specific time frame but

over the next executions of the neighborhood contract and

majority voting there will be a result that is accepted by all

nodes referencing a previous result transaction and so on.

This is like “the longest chain wins” when comparing to

blockchain architecture, where we have a separate chain for

each neighborhood result.

J. Tasks of a Maintainer Node

This node has the following tasks:

• Adding new nodes to the neighborhood and changing the

neighbor structure. The restructuring assigns every node

randomly selected neighbors which minimizes the effect

that malicious node clusters can try to influence honest

nodes while new nodes are perfectly embedded into the

network. The limit set here is five neighbors to allow for

nice majority voting while not flooding the network with

messages between them

• Publishing of validation keys for the neighborhood mar-

ket

• Collect and validate Data on energy consumption of each

household

• Generating bills

IV. EVALUATION

enerDAG and its concepts allow local energy trading inside

neighborhood environments. To test the neighborhood market

prototype it is co-simulated with a Kerber Vorstadtnetz model

included in the pandapower package [22]. This power grid

contains a representative number of houses with and without

photovoltaic. Both simulations are orchestrated by the mosaik

co-simulation framework [23] to synchronize power produc-

tion / consumption with the transactions on the tangle. It can

easily be extended by just adding producers, prosumers and

consumers. This neighborhood is designed to feature all of the

ideas that the enerDAG software has:

Anonymity & Pseudonymity Through the neighborhood en-

cryption it is ensured that only participants of the specific

neighborhood and their maintainer node can read the bids.

Additionally we have introduced the concept of switching

addresses for each transaction, which minimizes the risk

of being able to link households to transactions for normal

participants. Bigger households with very specific energy

prosumption characteristics will still be identifiable.

Decentralization As far as possible the energy trading is

decentralized. All participants validate the trading events

and even a temporary outage of the maintainer node and

a few other nodes doesn’t hinder the trading. The main-

tainer node is needed to permit entry to a neighborhood

and to generate bills in this tokenless environment.

Reliability & Availability Through the decentralization a

high availability is granted. Multiple parties can be

unavailable or be newly joining without hindering the

functionality of the trading platform. Even the maintainer

node can be unavailable for a certain time only a wide-

area outage of the energy and communication network

can lead to outages of the system. Only the sync mode

described in III-D can lead to a problem in very small

neighborhoods when multiple new nodes join at the

same time and therefore a new transaction with unknown

approvedTips isn’t getting forwarded by a majority of

the neighbors since they also don’t know these references.

Correctness The correctness of the trading platform is se-

cured through the design decision of using tangles as

data storage and through the permissioned energy trading

rights through a central maintainer. This leads to valid

trading transaction in defined user groups, which get

validated through the consensus mechanism and stored

immutably in the tangle.

Security & Risk analysis Since only permissioned members

can participate in each neighborhood the risk of of a

malicious neighbor is reduced. Additionally the main-

tainer node can check for correct bids and compare it to

the results of the metering point operator. If a malicious

behavior is detected the bad actor can be taken in recourse

and can be stopped from further trading. For getting

economic advantages by changing the market algorithm

over a majority of over two thirds of the nodes would

Fig. 3. Example of a small neighborhood

needed. Additionally no tokens or similar things are

exchanged which also reduces the attack surface. Still

there needs to be further security analysis to be done.

Fairness Through the specific design of two phases for each

trading event no node can get an advantage through

specific behavior.

Energy- and Costefficency Since expensive calculations like

the PoW in Bitcoin or Ethereum or the IOTA Tangle tip

selection algorithm are avoided or improved enerDAG

should work better than current State of the Art but

there is no concrete data to rely on for comparison. For

storage enerDAG supports the option of regular snapshots

but could still be more aggressive in removing irrelevant

old transactions while still keeping the chain of market

results. A problem is the size of the validationKeys

list. This list would be approximate 900kB for 100

participants neighborhood with 5 minute trading periods

and would need to be distributed to each participant daily.

Scalability enerDAG is based on the tangle which in itself

already offers great throughput and scalability. Addition-

ally there exists the options to separate bigger local areas

in different parallel tangle flows so the small nodes only

get reduced traffic.

V. CONCLUSION AND FUTURE WORK

As we showed in IV we have developed a flexible and

extendable local energy platform and have fulfilled most of

the goals and requirements for a useful smart grid and big

scale deployment.

The composition of the energy price with taxes, grid

charges, current financial and costs for accounting is still an

open question.

In the future we will add a apartment house contract to make

it simple for house owners to sell their produced energy first

inside the house to tenants before it goes to the neighborhood

without any big setup overhead for the owner.

Another focus is on bringing this implementation down to

low power platforms by adding hardware acceleration low

power communication channels to maximize the benefit of the

system.

REFERENCES

[1] B. Mika and A. Goudz, Blockchain-Technologie in der

Energiewirtschaft: Blockchain als Treiber der Energiewende. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2020. [Online]. Available:
http://link.springer.com/10.1007/978-3-662-60568-4

[2] O. Abrishambaf, F. Lezama, P. Faria, and Z. Vale, “Towards
transactive energy systems: An analysis on current trends,” Energy

Strategy Reviews, vol. 26, p. 100418, Nov. 2019. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S2211467X19301105

[3] G. Kerber, “Aufnahmefhigkeit von Niederspannungsverteilnetzen fr die
Einspeisung aus Photovoltaikkleinanlagen,” Ph.D. dissertation, Technis-
che Universitt Mnchen, 2011.

[4] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” p. 9,
2008. [Online]. Available: https://bitcoin.org/bitcoin.pdf

[5] K. Wst and A. Gervais, “Do you need a Blockchain?” p. 7.
[6] D. Yaga, P. Mell, N. Roby, and K. Scarfone, “Blockchain technology

overview,” National Institute of Standards and Technology, Gaithersburg,
MD, Tech. Rep. NIST IR 8202, Oct. 2018. [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/ir/2018/NIST.IR.8202.pdf

[7] T. Koens and E. Poll, “What Blockchain Alternative Do You Need?”
in Data Privacy Management, Cryptocurrencies and Blockchain Tech-

nology, ser. Lecture Notes in Computer Science, J. Garcia-Alfaro,
J. Herrera-Joancomart, G. Livraga, and R. Rios, Eds. Cham: Springer
International Publishing, 2018, pp. 113–129.

[8] “Brooklyn Microgrid | Community Powered Energy.” [Online].
Available: https://www.brooklyn.energy

[9] L. Ableitner, A. Meeuw, S. Schopfer, V. Tiefenbeck, F. Wortmann,
and A. Wrner, “Quartierstrom – Implementation of a real world
prosumer centric local energy market in Walenstadt, Switzerland,”
arXiv:1905.07242 [cs], May 2019, arXiv: 1905.07242. [Online].
Available: http://arxiv.org/abs/1905.07242

[10] A. Brenzikofer, A. Meuw, S. Schopfer, A. Wrner, and C. Drr,
“QUARTIERSTROM: A DECENTRALIZED LOCAL P2P ENERGY
MARKET PILOT ON A SELF-GOVERNED BLOCKCHAIN,” p. 5,
2019.

[11] A. Wrner, A. Meeuw, L. Ableitner, F. Wortmann, S. Schopfer, and
V. Tiefenbeck, “Trading Solar Energy within the Neighborhood: Field
Implementation of a Blockchain-Based Electricity Market,” p. 12, 2019.

[12] A. Brenzikofer and N. Melchior, “Privacy-Preserving P2P Energy
Market on the Blockchain,” arXiv:1905.07940 [cs], May 2019, arXiv:
1905.07940. [Online]. Available: http://arxiv.org/abs/1905.07940

[13] G. van Leeuwen, T. AlSkaif, M. Gibescu, and W. van Sark, “An
integrated blockchain-based energy management platform with bilateral
trading for microgrid communities,” Applied Energy, vol. 263, p.
114613, Apr. 2020. [Online]. Available: https://linkinghub.elsevier.com/
retrieve/pii/S0306261920301252

[14] “PARENT Project | Helping communities reduce their energy
consumption,” library Catalog: www.parent-project.eu. [Online].
Available: https://www.parent-project.eu/

[15] Popov, Serguei, “The Tangle,” 2018.
[16] S. Popov, O. Saa, and P. Finardi, “Equilibria in the Tangle,” Computers

& Industrial Engineering, vol. 136, pp. 160–172, Oct. 2019, arXiv:
1712.05385. [Online]. Available: http://arxiv.org/abs/1712.05385

[17] N. Szabo, “Smart Contracts,” 1994. [Online]. Available: http://www.fon.
hum.uva.nl/rob/Courses/∼InformationInSpeech/CDROM∼/Literature/
LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html

[18] ——, “Smart Contracts: Building Blocks for Digital Markets,”
1996. [Online]. Available: http://www.fon.hum.uva.nl/rob/Courses/
∼InformationInSpeech/CDROM∼/Literature/LOTwinterschool2006/
szabo.best.vwh.net/smart contracts 2.html

[19] ——, “The Idea of Smart Contracts,” 1997. [Online]. Available: http:
//www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM∼/
Literature/LOTwinterschool2006/szabo.best.vwh.net/idea.html

[20] ——, “A Formal Language for Analyzing Contracts,” 2002.
[Online]. Available: http://www.fon.hum.uva.nl/rob/Courses/
∼InformationInSpeech/CDROM/Literature/LOTwinterschool2006/
szabo.best.vwh.net/contractlanguage.html

[21] V. Buterin, “A next-generation smart contract and decentralized appli-
cation platform,” white paper, p. 36, 2014.

[22] L. Thurner, A. Scheidler, F. Schäfer, J. Menke, J. Dollichon, F. Meier,
S. Meinecke, and M. Braun, “pandapower an open-source python tool
for convenient modeling, analysis, and optimization of electric power
systems,” IEEE Transactions on Power Systems, vol. 33, no. 6, pp. 6510–
6521, Nov 2018.

[23] “mosaik.” [Online]. Available: https://mosaik.offis.de

