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Abstract— Complete perception of the environment and its
correct interpretation is crucial for autonomous vehicles. Object
perception is the main component of automotive surround sens-
ing. Various metrics already exist for the evaluation of object
perception. However, objects can be of different importance
depending on their velocity, orientation, distance, size, or the
potential damage that could be caused by a collision due to
a missed detection. Thus, these additional parameters have to
be considered for safety evaluation. We propose a new safety
metric that incorporates all these parameters and returns a
single easily interpretable safety assessment score for object
perception. This new metric is evaluated with both real world
and virtual data sets and compared to state of the art metrics.

I. INTRODUCTION

The development of autonomous vehicles is being pushed

forward by many manufacturers and research institutes. It

is expected to bring various benefits, such as reducing

the number of accidents and traffic jams. However, before

marketability is reached, the safety of self-driving cars must

be guaranteed. In order to be able to carry out and plan safe

actions, an autonomous vehicle must be able to perceive its

environment completely and correctly. Therefore, new meth-

ods to verify the safety of a perception system are needed.

All sensors must work correctly and have to be resilient

against environmental influences for the sensed environment

to be trusted. Furthermore, the system must process these

data taking the environment, the traffic situation, and the

properties of all road users into account.

Unfortunately, those systems do not always work as ex-

pected to this date. This is shown by fatal accidents caused

by self-driving cars, where the “self-driving system software

classified the pedestrian as an unknown object, as a vehicle,

and then as a bicycle with varying expectations of future

travel path” [1].

Accidents like this could have been avoided if the con-

ducted tests had covered possible environmental conditions

more completely. Additionally, the metrics used to evaluate

such systems should have paid more attention to progression

in time, possible vulnerability of third party road users, or

consistency of the perceived objects and their classifications.

Existing metrics do not provide any information about the

safety of an entire perception system including object criti-

cality and environmental conditions.

In this work, we propose a metric that takes all these

parameters into account and provides a simple yet powerful
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measure of safety for object detection and tracking algo-

rithms. In Section II, we examine important existing but

functionally lacking metrics. Then, we present our improved

safety metric in Section III. Finally, in Section IV and V we

evaluate, compare, and discuss the proposed method using

real world and virtual data.

II. RELATED WORK

Verifying and identifying the limits of perception systems

is crucial to ensure safe operation. Dreossi et al. [2], and

Volk et al. [3], generate adversarial conditions for stress

testing Convolutional Neural Networks (CNNs) in order to

determine the limits of object detection.

Existing benchmarks like COCO [4] or parts of KITTI [5]

use simple performance indicators such as precision, accu-

racy, recall, and mean average precision (mAP) to evaluate

object detection [6], [7], [8]. These performance metrics are

based on classifying detected objects as true positive (TP) or

false positive (FP). Classification is performed on the basis of

Intersection over Union (IoU) between detection and ground

truth (GT). The IoU, which is also known as Jaccard-Index,

is a widespread metric to evaluate object detection [9]. It

uses the area of the intersection and the union of a detected

bounding box D and the corresponding GT bounding box G

and is defined by Rezatofighi et al. [9] as

IoU =
|D ∩G|

|D ∪G|
. (1)

IoU is used by object detection benchmarks like Pascal

VOC [8] and COCO [4]. The threshold value to consider

an object as TP can be parameterized individually. Different

threshold values like 0.5 in Pascal VOC or 0.7 in KITTI are

used. They are also adjusted according to the object class to

be detected. The aforementioned metrics focus on evaluating

a single frame and can be used to assess the performance of

bounding box-based object detection in both 2D and 3D.

However, all of these metrics consider annotated GT objects

only and lack the ability to evaluate object-tracking methods.

In 2006, the Classification of Events, Activities and Re-

lationships (CLEAR) defined different metrics for the eval-

uation of object tracking, person identification, head pose

estimation and acoustic-scene analysis. The results were

presented by Stiefelhagen et al. [10]. As part of the track-

ing evaluation, the Multiple-Object-Tracking and Multiple-

Object-Detection precision (MOTP/MODP), and accuracy

(MOTA/MODA) metrics were defined. Important aspects and

drawbacks of these CLEAR metrics will be discussed in the

following.



Let mt and fpt be the amount of misses and false positives

at time t and let gt be the number of ground truth objects

at time t. To determine the MODP score all mapped object

sets are used to calculate the IoU of each object. N
mapped
t

denotes the number of mapped object sets at time t. Based

on these values including the IoU score, MODA and MODP

are defined as:

MODA(t) = 1−

∑

t(mt + fpt)
∑

t gt
, (2)

MODP(t) =

∑N
mapped
t

i=1 IoUi

N
mapped
t

. (3)

In addition to the above described values the tracking

metrics include the parameter mmet, which represents the

number of mismatches between object and tracking hypothe-

sis. The parameter di,t describes the distance between the ith

ground truth object and tracking hypothesis at time t. Similar

to N
mapped
t , ct is the quantity of matches for a frame at time

t. Including these additional values, MOTA and MOTP are

defined as:

MOTA(t) = 1−

∑

t(mt + fpt +mmet)
∑

t gt
, (4)

MOTP(t) =

∑

i,t di,t
∑

t ct
. (5)

Nowadays, the CLEAR metrics are an important method

to evaluate the performance of object detection and tracking

algorithms. They are used by relevant benchmarks such as

KITTI’s Multiple-Object-Tracking benchmark [5].

The biggest advantage of the CLEAR metrics in com-

parison to basic performance metrics like precision and

accuracy lies in the higher level of detail. Using the IoU

respectively the distance to determine the precision scores

allows a better statement about the precision compared to

the binary way of calculation based on TP and FP amount.

However, to evaluate the tracking performance only the

distance to the ground truth object gets considered and the

IoU is neglected. This approach might be applicable for

distant objects but especially for the evaluation of closer

objects the IoU has to be considered. Without an exact IoU

consideration it is not possible to guarantee that autonomous

vehicles correctly perceive their environment and are able

to plan safe maneuvers. Hence, the CLEAR metrics, which

evaluate the detection performance, have to be considered

as well. However, having four single metric results does

not allow for a fast evaluation. An other drawback of the

CLEAR metrics is that they only cover the evaluation of the

precision and accuracy of detection and tracking without a

differentiation of detection time or relevance of the object.

A new real-time performance evaluation for object detec-

tion including the CLEAR metrics has been proposed by

Kim et al. [11]. As a metric for real-time video surveillance

systems, they include the time which is required to detect an

object. In the proposed soft real-time mode the CLEAR met-

ric scores are mapped to an interval of [0; score] if detection

time exceeds a given threshold τ . Since the mapping function

is not explicitly defined a variable usage in different systems

with varying requirements in perception time is enabled. Kim

et al. also proposed a hard-real-time mode in which the score

is set to 0 if detection time exceeds τ . However, in the field of

video surveillance the relevance factor is less essential than

in automated driving. The extension of the CLEAR metrics

of Kim et al. can therefore not be directly applied to evaluate

perception algorithms for autonomous vehicles.

In 2017 Shalev-Shwartz et al. [12] presented a new

approach to guarantee safety in automated driving. The

“Responsible-Sensitive Safety” (RSS) model is an attempt

to formalize the human judgment in different road scenarios

in a mathematical sense. The RSS model consists of 34

definitions of different safety distances, times, and procedural

rules to fulfill the following five simplified rules:

1) Do not hit anyone from behind

2) Do not cut-in recklessly

3) Right-of-way is given and cannot be enforced

4) Act carefully at areas with limited visibility

5) If it is possible to avoid a collision without causing

another one, the collision must be avoided

These rules specify how an autonomous vehicle should

behave and provide a mathematical description of a safe

conduct. However, RSS does not provide an opportunity

to evaluate the safety of a vehicle in a given scenario. If

for example the environment perception of an autonomous

vehicle does not detect a preceding vehicle it can not be

guaranteed that rule 1 of RSS will be fulfilled. To guarantee

the safety of autonomous vehicles it is therefore necessary

that perception systems can be evaluated whether they are

able to detect all safety relevant objects in a given scenario.

Another key factor for safety of an autonomous vehicle is

the ability to cope with all possible environmental influences.

Different weather conditions like snow or rain affect the

brake distance by decreasing the friction coefficient [13].

The CLEAR metrics and the metrics used for evaluation

in [4], [5], [8] do not consider environmental conditions.

However, to evaluate the safety of autonomous vehicles

these influences are of great importance and must be taken

into account. Especially in adverse weather, an autonomous

vehicle must be able to detect obstacles at an early stage in

order to be able to react in time to longer braking distances.

III. SAFETY METRIC

The main goal of this work is to create a metric which

does not only evaluate the performance but also considers

real-world safety of an object perception system. A key

requirement is to create a metric which allows to compare

different perception systems under varying road scenarios

and different weather conditions easily. For this purpose the

result has to be a single value in a defined range.

The composition of the individual safety metric compo-

nents and their relationship is presented in Fig. 1. It illus-

trates the process of how our approach combines different

components to obtain a single safety-metric evaluation that

allows easy comparison of the perceptual algorithms.
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Fig. 1. Process overview of the single components and their relation to
one another to determine the safety metric score S. Ego vehicle is black.
Red circle around ego indicates safety critical area.

For evaluation of safety we defined three criteria to con-

sider:

Quality The quality of the perception is important for

further actions to be performed such as the trajectory

planning.

Relevance A potentially collision relevant object must not

go unrecognized. Hence, we have to distinguish between

relevant and irrelevant objects.

Time In a real-time system, time is always a relevant factor.

Longer detection times lead to less reaction time and

decrease the amount of possible driving maneuvers.

A. Basis of the Safety Metric

To evaluate safety in automated driving, the quality of the

object perception has an enormous relevance. Based on the

perception, further actions like prediction or planning will

be performed. If detection or tracking are of low quality, it

could lead to erroneous planning, which could endanger the

vehicle occupants and other road users.

Therefore, perception quality is a main safety factor and

will be used as the basis of the safety metric. The quality con-

sists of two factors: accuracy and precision. To combine these

factors we use the CLEAR metrics [10] as indicator for the

quality of object detection and tracking (see Section II). The

choice of CLEAR metrics was based on the completeness of

the metric, as it combines performance scores for multiple-

object-detection and -tracking with accuracy and precision.

Precision is defined as relation between TP and FP detec-

tions with the formula by Davis and Goadrich [7]:

Precision =
TP

TP + FP
. (6)

In addition to the definition by Davis and Goadrich,

MODP/MOTP indicates a more detailed precision calcula-

tion. Using Definition (6) for precision calculation leads to a

loss of information. Due to the classification as TP or FP the

original overlap information of detection and ground truth is

lost. MODP/MOTP preserve this information and therefore

have a higher level of detail. This is another criteria for

choosing the CLEAR metrics as basis of the the safety metric

to evaluate the perception quality.

While using the CLEAR metrics to evaluate safety, one

problem regarding the MOTP score appears. MOTP corre-

sponds to the mean distance between tracked position and

ground truth position. Hence, a lower MOTP score indicates

a better tracking. This is contrary to the safety metric score

where a higher score corresponds to better safety. To invert

the MOTP indication, a mapping between MOTP scores and

a MOTP safety metric score MOTPs ∈ [0, 1] needs to be

defined. Let Tu be the upper and Tl the lower threshold.

MOTPs can be determined by using the normalization

function fnorm which is defined as

fnorm(x) =











1 x < Tl

1− x−Tl

Tu−Tl

Tl ≤ x ≤ Tu

0 otherwise

. (7)

In our experiments we set Tl = 0.8m, as this value

complies with step width of a vulnerable road users (VRU)

to avoid a collision. By similar reasoning we set Tu = 2.5m,

which roughly corresponds to a misjudgment that could lead

to minor injuries in case of a collision. A linear function is

used because MOTP is metrically scaled. Hence, for each

∆MOTP1 = ∆MOTP2, where ∆MOTPi stands for an

increase of the MOTP score, the influence is equally bad,

independent of the MOTP score. This also applies for the

use of fnorm in Section III-B.3.

In general, the threshold values of fnorm are parameteriz-

able based on the field of application and the corresponding

demands. This increases the variability and enables the appli-

cability of the metric for the evaluation of different systems.

For the proposed safety metric we consider precision and

accuracy as equally important, thus we use the accuracy

and precision score of detection and tracking to calculate

a separate basis score. The detection safety score (SD) and

the tracking safety score (ST ) are defined as the mean of

their corresponding CLEAR metrics scores:

SD =
MODA+MODP

2
, ST =

MOTA+MOTPs

2
. (8)

B. Additional Criteria

The following sections will introduce additional criteria,

which are used in combination with the basis (see Section III-

A) to evaluate safety. These criteria correspond to the three

safety criteria, which were introduced in Section III. For

quality optimization we use a distance-based IoU verifi-

cation. The second subsection considers the evaluation of

collision relevance, which covers the criteria of relevance.

Finally the detection time is considered as third criteria.

1) Distance-based IoU Verification: During the calcula-

tion of the CLEAR metrics as basis of the safety metric a

second parallel assessment is performed. For objects which

are closer to the ego vehicle the perception has to be more

accurate. This stricter requirement for closer objects is based

on the reduced time to react in maneuver planning. Since



these objects show a higher safety criticality, we have to

differentiate the perception quality. The quality itself depends

among others on the precision in detection (see Section III).

This criteria is defined on basis of the IoU score.

The distance-based IoU verification uses the cover C of

G. For a detected object o the cover Co is defined as

Co =

{

|Do |
|Go |

|Do ∩Go | == |Go |,
|Do∩Go |

|Go |
otherwise.

(9)

Using Co , the safety function fs is defined as

fs(Co) =























1+mC+(1−mC ) sin(π(Co−
1
2
))

2 Co ∈ (mC , 1],

1 Co ∈ (1, oT ],
1+cos( π

mO−oT
(Co−oT))

2 Co ∈ (oT,mO ],

0 otherwise.
(10)

This function guarantees a minimum detection precision

mC . In between the thresholds mC and mO , trigonometric

functions are used for a smooth distance-based scaling factor

depending on the precision of the detection. oT defines

a threshold how much larger an object is allowed to be

detected without lowering the detection precision. If Co is

larger as oT , mO represents the upper bound up to which fs
reduces the precision towards zero. The second part of the

verification is the mapping of fs(Co) based on the distance

of the object. To combine fs(Co) with the corresponding

distance do between o and the ego vehicle, they have to be

in the same interval. Therefore the maximum distance of the

evaluation range is used to normalize all distances do. This

leads to ∀o : do ∈ [0, 1].
The distance based score is calculated by function g :

[0, 1]2 → [−1, 1] where

g(x, y) = x− (1− x) · (1− y). (11)

To use g(fs(Co), do) as distance based detection precision

factor fv it has to be transformed to be in [0, 1]:

fv =
g(fs(Co), do) + 1

2
. (12)

For each detected object o the IoU gets scaled by fv with

IoUo · fv . This additional verification of detection precision

leads to a stricter rating. In context of safety, a stricter rating

should be preferred.

2) Consideration of the Collision Relevance: The second

criteria for evaluating the safety of a perception system is

the relevance for safety. A potentially safety critical object

has a higher relevance than a non safety critical object. A

distinction must therefore be made here.

An object is safety critical if its distance to the ego vehicle

is less than the corresponding safety distance. To calculate

the safety distance to an object we use the approach of

the RSS model [12]. It defines different safety distances

for longitudinal and lateral positioning of two objects. We

use the longitudinal safety distance with same direction

of movement dlong,s, with opposite direction of movement

dlong,o and the lateral safety distance dlat [12, Def. 1, 2, 6].

To evaluate the collision relevance the future position of

an object needs to be predicted. Let v0 be the ego velocity

and a the current weather-dependent brake acceleration. The

prediction time frame tp depends on the braking time tb,

which is defined as tb =
v0
a

. To ensure a sufficient prediction

time, tp includes a ten percent buffer: tp = 1.1 · tb.

During the time span [ta, ta+ tp], where ta represents the

actual timestamp, a position prediction for each GT object

and the ego vehicle is performed. For each time step it is

checked whether the distance between ego and the object

is greater than the corresponding RSS safety distance. If

this is not the case and the object was not perceived by the

perception system to be evaluated, the object is marked as

safety critical.

Fig. 2 shows the identification schematically. For identifi-

cation of safety critical objects traffic lights as present in the

illustrated scene are not considered. In order to guarantee a

safe perception of the surroundings, objects that are obliged

to stop at a red traffic light must also be perceived. If such

a vehicle does not keep to the road traffic regulations and

drives over a red light, a non-recognition would be fatal.

The illustrated data represents frame 90 from drive 11 of the

KITTI raw dataset [14]. The velocities in this scene were

increased such that a hypothetical collision would occur in

the predicted time frame. The red area in the bird’s eye

view marks the safety critical area identified by lateral and

longitudinal safety distances of RSS. The identified collision

relevant objects are marked in red. If they are not detected

they are safety critical as illustrated in Fig. 3.

To rate the relevance in context of safety, we need to

approximate the effect of a hypothetical collision. The first

step is an approximation of the impact velocity, in case of

an in fact collision. For this purpose there are four simplified

scenarios, which are head-on collision, rear-end collision,

side-on collision, or a diagonal collision. Based on this

classification, the impact velocity can be approximated.

Since safety in automated driving affects not only the

vehicle occupants but also other road users, these must also

be taken into account. Road users can be separated into two

categories. The first category are VRUs. The second category

contains all road users with crush collapsible zone which

includes cars, vans, trucks and trams.

The combination of impact velocity and the road user

category c of the colliding object leads to a defined collision

score sc,ro for a relevant safety critical object ro which is

undetected. To determine sc,ro a four-level classification of

the vehicle impact velocity is defined. The definition of the

accident levels is based on the common accident categories

used in Germany. They are defined as UK 1 (fatality) - UK 3

(minor injuries only) by the Ministry of the Interior of the

state Nordrhein-Westfalen in Germany [15]. The additional

UK 5 (material damage only) is used to include hypothetical

collisions without minor injuries [15], which are nevertheless

relevant.

The effects of vehicle impact velocity in a collision is
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Fig. 2. Schematical identification of collision relevant objects from KITTI raw dataset [14]. The right image represents the bird’s eye view of the camera
image on the left. Blue boxes illustrate ground truth annotations, light blue boxes represent the predicted object positions from the safety metric. Red filled
objects are collision relevant and white ones are not. The corresponding collision relevant objects in the camera image are marked in red.

investigated in works by Frederiksson et al. [16] or Han et

al. [17]. The defined classes with the corresponding collision

scores sc,ro are:

sc,ro :=



















0.9 no or almost no effect,

0.75 risk of minor injuries,

0.5 risk of serious violation,

0 high probability of fatality.

(13)

For our purpose sc,ro is used as a factor for each frame.

Therefore sc,ro ∈ [0, 1] must apply. A rated collision with

high probability of fatality is unacceptable and leads to a

score of 0. The case with almost no effect is worse than no

accident, thus a factor of 0.9 is defined. Due to the high effect

on the final safety metric score, sc,ro should not be too strict

otherwise the final result will drop too fast which leads to

inaccuracy as there is no clear difference between the defined

classes. To set sc,ro for the remaining two cases, the possible

range of [0, 1] was divided by four levels which leads to

sc,ro = 0.75 for minor injuries, respectively sc,ro = 0.5 for

serious violations.

For each frame t the minimum (worst case) sc,ro is

calculated and used as direct relevance factor fc on ST and

SD. An existing collision relevance indicates a safety risk

and leads to a drop of S.

3) Evaluation of Perception Time: The third criteria of a

safety critical real-time perception system is the time. The

more time object detection needs, the less time remains to

prevent a safety critical situation. In the proposed safety

metric, the time criteria gets covered by the soft real-time

approach of Kim et al. [11].

For the proposed safety metric, the perception time td,o of

object o is defined as duration from entering a safety critical

area until its perception. The safety criticality is defined

using the safety distances from Shalev-Shwartz et al. [12],

which are introduced in Section III-B.2. The evaluation of

perception time for a perceived object with a higher distance

than the corresponding RSS distance has to be adapted. For

these objects we use the difference between ta and perception

timestamp, which is negative. Thus an earlier perception

leads to a higher safety, a positive influence of a negative

detection time on the safety score is granted and valid.

To map the detection time to a perception time factor

a weighted perception time is used. The weighting was

introduced because the longer the detection takes the more

safety critical the situation gets. For this purpose the mean

perception time is utilized to classify between long and short

times. Let m be the number of all weights and td the mean

perception time. The weighted perception time tdw is then

defined as

tdw =
1

m

∑

o

{

td,o td,o ≤ td,

2 · td,o otherwise.
(14)

Similar as proposed by Kim et al. [11], the CLEAR

metric scores are mapped by a function depending on tdw.

Mathematically equivalent tdw can be mapped to an interval

[0, 1] and be used as perception time factor ft. Definition

(7) with parameter tdw is used to determine ft. Tl is set to

0.1 s, which allows a tolerable delay in perception. For Tu

the ego braking time tb (see Section III-B.2) is used. If this

time is exceeded, ft has to be 0, because an emergency stop

to avoid a safety risk is not possible anymore.

C. Comprehensive Safety Metric Score

Due to the described requirement of a simple comparabil-

ity between the safety scores of different perception systems

and scenarios, the safety metric is calculated as a single score

S ∈ [0, 1], where 1 is the maximum safety. Like precision,

recall, or accuracy, S is calculated for a scenario with t

frames using SD and ST including the evaluation of collision

relevance and perception time.

To fulfill the requirement of a high variability to adapt the

safety metric to various perception systems, SD and ST can

be weighted variably with wD, wT ∈ [0, 1] : wD + wT = 1.

This leads to the following safety score definition:

S = wDSD + wTST . (15)

In contrast to precision, accuracy, or recall the comprehen-

sive safety is not a percentage value, which leads to a non-

intuitive interpretability. To increase the interpretability, a



classification of S must be defined. The defined classification

includes five levels and is based on the rating for the single

CLEAR metrics values and the defined influences of collision

relevance and the detection time analysis:

S ∈ Classification

[0.0− 0.2] insufficient, high risk of fatality

(0.2− 0.4] bad, existing risk for serious violation

(0.4− 0.6] good, low probability of minor injuries

(0.6− 0.8] very good, low risk UK 5 collisions

(0.8− 1.0] excellent, high probability of safe status

This classification enables a simple and quick safety

evaluation of a test scenario and allows a comparison to

performance metrics for more detailed analysis.

IV. RESULTS

To show the advantages and variability of the proposed

safety metric, we compare it to widely used metrics like

already discussed in Section II. The results are divided into

three parts. In the first part we investigate an exemplary

detection on the KITTI raw dataset. The second part assesses

image-based object detection performance of the three well-

known neural networks RRC [18], Faster-RCNN [19], and

YOLOv3 [20]. In the last part the metric is used to evaluate

a 3D object detection and tracking system. An IoU threshold

of 50% was used to classify an object as TP detection for

both image-based and 3D object detection.

For evaluation real and virtual data is used. The evaluation

was conducted without environmental influences like rain or

snow. However, first evaluations have shown that the final

safety score decreases due to consideration of reduced road

friction. For real world data KITTI’s raw data recordings [14]

were utilized. The scenes provide labeled 3D object tracklets

and odometry information for the ego vehicle. This data is

required for the safety metric. Otherwise, the safety specific

evaluation as shown in Section III-B can not be conducted.

Only those recordings of the KITTI raw dataset were used

for evaluation which had a length of at least 30 seconds and

at least 10 labeled objects. In different KITTI benchmark

tasks like 3D or 2D object detection each object label gets

evaluated separately. For the evaluation of the safety metric

and comparison with other performance metrics all present

labels in the recorded data were considered and evaluated.

As source for virtual test data Vires VTD [21] was used.

Three different scenarios as presented by Volk et al. [22]

were considered. An urban crossing scenario with a lot of

obstructions, a motorway scenario with higher velocities, and

a rural one containing only few road users on a country road.

A. Exemplary KITTI scene

An exemplary KITTI scene gets evaluated at first to show

the behaviour of the proposed safety metric. The scene is

illustrated in Fig. 3 and is the same as in Fig. 2 which

additionally shows the corresponding camera image. Fig. 3

shows TP detections in green and missed detections which

where identified as safety critical in red. Blue boxes mark

x

y

Ego

Fig. 3. Exemplary bird’s eye view detection on KITTI raw dataset scene
as in Fig 2. Blue boxes represent ground truth, green ones are correctly
detected objects and red ones are safety critical objects.

remaining ground truth objects which are not yet safety

critical. This scene contains five TP detections, two missed

safety critical detections and two missed detections excluding

the Ego vehicle. This results in a recall value rec = 5
9 =

55.5% and a precision prec = 5
5 = 100%. For the collision

relevance evaluation (see Section III-B.2) the not detected

cyclist is a VRU. Including the velocity this leads to a

relevance factor fc = 0 as a collision with a VRU has a

high probability of fatality. The final safety metric score S

would therefore be 0. This shows that existing metrics do

not capture the severity of missed VRU detections but the

proposed safety metric does.

B. Image-based Object Detection

For image-based object detection three neural networks

are evaluated. The results of the proposed safety metric

are compared against the currently used evaluation metrics

recall, precision, and mean average precision as presented in

Section II. The results of the different metrics for YOLOv3,

Faster-RCNN, and RRC are shown in Tables I, II, and III.

The results for KITTI should not be mistaken with the

online available results on the KITTI benchmark page. We

performed the evaluation on all class labels while they are

listed separately per class label on the KITTI benchmark site.

Therefore, the presented results show lower values.

The final safety score S (see Eq. 15) is composed of SD

and ST . Image-based object detection alone does not allow

for an evaluation of tracking performance. Therefore, wT was

set to 0. This way it is possible to adapt the safety metric

to the specific target system under evaluation. With wT = 0
the final safety score S = SD.

When we compare the results for the three different algo-

rithms, it can be seen that the safety score has a similar trend

as mAP. However, in some examples, like Faster-RCNN on

the KITTI benchmark, the safety score is much lower than

the mAP. This indicates that Faster-RCNN was not able

to detect collision relevant objects precisely or completely

missed to detect them. In the KITTI case RRC performed

best according to the standard performance metrics. This got

confirmed with the safety metric which made the advantage

of RRC over Faster-RCNN even more clear.



TABLE I

EVALUATION RESULTS FOR OBJECT DETECTION WITH YOLOV3.

Virtual Scenarios

KITTI Motorway Cross ing Rural

Precision 0.59 0.82 0.86 0.96

Recall 0.60 0.23 0.36 0.60

mAP 0.51 0.21 0.35 0.60

Safety score S 0.48 0.14 0.20 0.78

TABLE II

EVALUATION RESULTS FOR OBJECT DETECTION WITH FASTER-RCNN.

Virtual Scenarios

KITTI Motorway Cross ing Rural

Precision 0.58 0.57 0.43 0.59

Recall 0.73 0.10 0.19 0.36

mAP 0.64 0.09 0.12 0.30

Safety score S 0.46 0.11 0.14 0.52

The results on the virtual scenarios allow a more focused

evaluation as there is a complete ground truth. The safety

score on the motorway scenario is higher than mAP in all

cases except for YOLOv3. This is due to the fact that the

safety metric considers the higher velocities of the scene and

therefore harshly penalizes missed detections. This indicates

that YOLOv3 on the one hand detects more objects that are

less relevant or precise. On the other hand, RRC detected

the least number of objects in the motorway scenario but it

also detected the most collision relevant ones.

For the rural scenario, all algorithms show a much better

performance according to the safety score than the other

performance metrics because this scenario contains only two

objects. A far distant object, which hardly got detected by

any algorithm and is not relevant for safety. This shows that

the safety metric automatically adapts to a specific scene

and automatically gives an indication how well an algorithm

performed in perceiving the current environment.

C. 3D Object Detection and Tracking

For evaluating 3D object detection and tracking the per-

ception pipeline presented by Volk et al. [22] was employed.

The pipeline was extended to use YOLOv3 as image-based

object detection in combination with the L-shape fitting

algorithm by Zhang et al. [23]. For the KITTI dataset the

lidar-based object detection PointPillars [24] integrated by

Shi et al. [25] is utilized. The 3D object detection is followed

by a Kalman Filter using a constant velocity model. It

is beyond the scope of this paper to provide an optimal

3D detection and tracking, but it does show the impact

of different environments on the proposed safety metric.

Furthermore, only vehicle-local perception will be evaluated.

Similar to the image-based evaluation, the results for KITTI

should not be mistaken with the online available results as

we evaluated all class labels.

TABLE III

EVALUATION RESULTS FOR OBJECT DETECTION WITH RRC.

Virtual Scenarios

KITTI Motorway Cross ing Rural

Precision 0.86 0.89 0.64 1.00

Recall 0.73 0.04 0.12 0.14

mAP 0.69 0.04 0.09 0.14

Safety score S 0.69 0.19 0.16 0.79

For the evaluation we set detection and tracking as equally

important with wD = 0.5 and wT = 0.5. The results of

the evaluation are shown in Table IV. The metrics evaluated

using the KITTI raw data show similar trends. The safety

score S is higher than the metric values mAP and MODA.

This is a consequence of the safety metric focusing on critical

objects which might lead to a collision if not detected.

The original CLEAR metric for tracking accuracy MOTA

is higher than ST . The tracking precision MOTP is almost

5m worse compared to the virtual scenarios as all KITTI

object classes are evaluated. Especially trams represent very

long objects resulting in a fast decrease of tracking precision

if not correctly detected. This lowers the tracking safety

ST . However, tracking safety ST is still higher compared

to detection safety SD.

For the virtual motorway scenario higher velocities and

larger breaking distances show the lowest safety score S. S is

still higher as for example recall, mAP, or MODA. However,

the difference between mAP and S is the smallest of all

investigated virtual scenarios including the KITTI dataset.

This is because the highway scenario contains more collision

relevant objects dense traffic and distant objects, which are

mostly occluded by other traffic participants.

The intersection scenario behaves similarly to the motor-

way scenario, with the difference that occlusions are not

caused by other objects but by the environment. In this case

the safety score is higher compared to mAP and MODA

because objects exiting the crossing are less relevant as a

possible collision is unlikely compared to entering traffic.

The safety score for the rural road scenario shows the

highest results in the virtual scenes compared to detection

evaluation with precision, recall, mAP, MODA, or MODP.

Again the crash relevant objects are in focus by the safety

metric. The hard to detect more distant object is not consid-

ered because the safety distances according to the definitions

by RSS are large enough.

V. CONCLUSION & OUTLOOK

In this paper we presented a new way to assess safety of

object perception systems. In contrast to currently used eval-

uation metrics like mean average precision or the CLEAR

metrics the presented metric allows for a more complete

evaluation. The proposed metric identifies collision relevant

zones with definitions by RSS and penalizes undetected

collision relevant objects. Real time aspects are incorporated

by considering detection times as well as an additional



TABLE IV

BIRD’S EYE EVALUATION RESULTS FOR 3D OBJECT DETECTION AND

TRACKING.

Virtual Scenarios

KITTI Motorway Cross ing Rural

Precision 0.50 0.32 0.43 0.52

Recall 0.50 0.13 0.18 0.35

mAP 0.37 0.09 0.12 0.22

MODA 0.35 0.05 0.08 0.13

MODP 0.48 0.39 0.48 0.44

MOTA 0.65 0.39 0.28 0.72

MOTP [m] 6.83 1.64 1.36 1.87

SD 0.42 0.07 0.14 0.32

ST 0.53 0.19 0.24 0.83

Safety score S 0.47 0.13 0.19 0.58

detection quality check. A key advantage of the proposed

metric comes due its variability. The metric can be used

for evaluating image-based 2D object detection, 3D object

detection, single and multiple-object-tracking systems, and

even cooperative perception systems.

The safety metric always considers one specific ego ve-

hicle as evaluation target for which the safety score gets

evaluated. This score does not guarantee the safety of an

autonomous systems as this metric is only intended to eval-

uate object perception. However, prediction and planning are

equally important. The safety value is intended to evaluate

safety under the assumption that you must be aware of all

potentially dangerous objects in your environment in order to

initiate collision avoidance maneuvers. The result is always

one single and easily comparable value which is categorized

into five simplified safety stages (insufficient, bad, good, very

good and excellent). This simplifies the interpretation and

allows for a fast safety assessment.

As a next step, we are going to further improve our metric

and use it to evaluate the safety of vehicle-local and coop-

erative perception under adverse environmental conditions.
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