
Towards Realistic Evaluation of Collective Perception

for Connected and Automated Driving

Georg Volk1, Quentin Delooz2,3, Florian A. Schiegg5, Alexander von Bernuth1,

Andreas Festag2,4 and Oliver Bringmann1

Abstract— Collective perception in Vehicle-to-Everything
(V2X) communications allows vehicles to exchange pre-
processed sensor data with other traffic participants. It is
currently standardized by ETSI as a second generation V2X
communication service. The use of collective perception as a
communication service for future fully autonomous driving
requires a thorough evaluation and validation. Most of the
previous work on collective perception has considered large
scale-simulations with a focus on communications. However,
the perception pipeline used for collective perception is equally
important and must not be neglected or over-simplified. Also,
to study collective perception in detail, large-scale field testing
is practically infeasible.

In this paper we extend an existing simulation framework
with a realistic model for V2X communications and sensor-data
based processing delays. The result is a simulation framework
that incorporates the entire collective perception pipeline, which
enables to comprehensively study sensor-based perception. We
demonstrate the capabilities of this enhanced framework by
analyzing the delay of each component involved in the percep-
tion pipeline. This allows a detailed insight in end-to-end delays
and the age of information within the environmental model of
autonomous vehicles.

I. INTRODUCTION

Sensor data sharing using vehicle-to-everything (V2X)

communications is an effective and low-cost solution to

enhance the perception range of a vehicle’s sensors. It is

the basis for various advanced use cases for connected and

automated driving. The European Telecommunications Stan-

dards Institute (ETSI) has completed a study item for sensor

data sharing [1], named “Collective Perception” (CP) and is

actively working on the standardization. CP is based on the

periodic exchange of messages with the direct neighbours

within the communication range. The study item implies

important design decisions including the definition of the

Collective Perception Message (CPM) and features of the

communication protocol towards the future standard.

The CPM carries object lists, the vehicle’s sensor con-

figuration, and other data fields. Depending on the message

frequency and the number of objects included, CPMs can
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considerably increase the channel load [2]. To study the

trade-off between channel usage and information exchanged,

large-scale simulations were performed with V2X communi-

cation as focus, such as in [3] and [4]. The reason behind that

is that currently, large scale field tests are not viable because

too costly and difficult to setup. Moreover, a simulator able

to perform large scale simulations, i.e., with thousand of

vehicles, and capable of performing realistic communication

and perception in a reasonable amount of time, does no exist,

yet.

Therefore, the simulations performed in [1] assumed ide-

alistic perception, e.g., access to the information such as

heading, speed, and acceleration without measurement errors

for the objects detected, and considered perfect tracking.

While this approach was suitable to establish the message

generation and object inclusion rules of the CP service, the

impact of realistic perception on the CP should be considered

as well.

In this paper, we propose to extend the RESIST simulation

framework introduced in [5] to analyze the CP service with

a focus on the perception of objects. We break down the full

detection and CP pipeline into components and analyze their

respective latency and impact on the perception of objects.

We describe the simulation parameters and collect results

with well-known metrics in a highway scenario. We then

compare the obtained results with the ones obtained in [1]

and validate our communication model. Finally, we provide

an analysis on how realistic perception will influence the

CP service. For example, it should be considered that a

major part of the current CP service design relies on the

tracking and matching quality of the perceived and received

objects. Indeed, with a poor tracking and matching quality,

all redundancy and inclusion rules (see [1]) would become

inefficient as the objects would be wrongly associated or

considered as new. Moreover, the time required to perform

these matching and tracking operations should be considered

as it impacts the age of information of the objects managed

in the vehicles’ environmental model.

The remainder of this paper is organized as follows: After

reviewing existing work in Section II, we provide technical

background on the simulation framework in Section III. We

analyze source of delays in Section IV and describe our

simulation framework in detail in Section V. In Section VI

we present and discuss our results. Finally, we conclude our

paper in Section VII.



II. RELATED WORK

Initial work on CP dates back to 2012 [6]. Ideas developed

in [7] and others have led to standardization activities and to

the publication of the ETSI study item TR 103 562 [1]. Sev-

eral publications have reviewed the current design and elabo-

rated on algorithms for CPM generation, such as [3], [4], [8].

These studies relied on the Artery [9] and the ns3-network

simulators coupled to the Simulation of Urban MObility

(SUMO) framework. Simulation configurations used in the

study performed in [1] assumed that an object is perceived

when in direct line of sight of a sensor. Additionally, the

object processing delay was not considered and the tracking

of objects was assumed to be perfect. In [10], the authors

extended the Artery and SUMO frameworks with more

realistic vehicle dynamics and probabilistic sensor models

with the objective of enabling the generation of synthetic data

for the CP service. In [11], the authors used the simulator

CarMaker, real-world traffic racks and the Robot Operating

System (ROS) as middleware. Other research items have

considered different approaches than simulations. In [12], CP

is experimented in a real setup. In [13] and [14] analytical

models were used.

In this paper, we extend the RESIST simulator [5] and

implement a perception-focused framework to analyze the

CP service. In comparison to the other frameworks cited

above, the presented simulator distinguishes itself by the

usage of 3D simulation and a realistic camera sensor. The

objective of this simulator is to provide the ability to study

in detail how realistic perception influences the CP service.

Potential applications for this simulator are the study of the

redundancy control rules of the CP service (see [1]), espe-

cially the confidence and entropy based ones as they mainly

rely on the perception of the objects, the analysis of the

“look-ahead” mechanism presented in the same document,

and the analysis of the parameters used in the inclusion

rules of objects for CP. Our final goal is to perform studies

combining results from the presented simulator with those

of a dedicated network simulator (e.g., Artery).

III. BACKGROUND

In this section, the RESIST simulation framework as

proposed in [5] is introduced. The simulation framework

focuses on environmental conditions and includes a scenario-

dependent simulation of the communication channel. In

the RESIST simulator, the channel model is based on the

distance between sending and receiving vehicles and in-

corporates obstructions in between. Important features that

are relevant for communications, such as the Channel Busy

Ratio (CBR) and the inclusion rules for the CP service

as defined in [1], were missing. As these rules have a

considerable impact on how many CPMs are generated and

how many objects are included in each CPM, modifications

were needed to align with the current standard development

of CP. Additionally, the delay that occurs in the processing

pipeline of CP was only considered as a whole. To study CP

in more detail, improvements and measurements on the delay

aspect in each processing step of CP need to be considered,

especially as the delays have not been studied in depth yet.

In the following sections we explain the modifications and

improvements added to the simulator.

IV. DELAY ANALYSIS

The cooperative End-to-End (E2E) delay is the time be-

tween the detection of an object to its reception and process-

ing by another vehicle. Figure 1 shows the decomposition

of the cooperative E2E delay into three main components:

the E2E delay of local perception, the V2X communication

delay, and collective perception delay. Compared to other

delay estimations such as proposed by [15], this approach

allows for a more detailed and data dependent delay estima-

tion as the delay is not obtained as a constant but is derived

from each component in the processing pipeline. Further,

as most components are highly dependant on environment

(number of objects, number of cooperation partners, state

of the communication channel, ...) and the deployed system

(hardware, software, communication technology, ...) the main

dependencies are discussed. The hardware was chosen such

that the obtained values are comparable with those experi-

enced in different projects such as [16] and [17].

Delay due to local perception: the local perception

consists of four main components as illustrated in Figure 1:

object detection, matching, tracking, and fusion. The object

detection delay is defined as the difference between the cap-

ture time of the sensor data and the time when the sensor data

processing is finished. The matching delay represents the

time which is needed to associate detected objects with the

currently present object tracks in the environmental model

of the vehicle. Depending on the used tracking algorithm

a separate matching might not be necessary and could be

solved directly within the tracking algorithm itself [18]. The

Tracking delay is defined by the time needed by the track

management including the update or deletion of existing

tracks and creation of new ones. The fusion of object tracks

from different sensors is the last processing step resulting in

the delay needed to fuse these tracks. If a vehicle is only

equipped with one sensor a fusion is not needed.

Delay due to collective perception: the delay consists

of three basic components: data alignment, matching, and

track-to-track fusion. Objects contained in CPMs have an

additional delay composed of the communication delay and

the delay of asynchronous processing of the ego vehicle

and other cooperative ones. Therefore, the first processing

step in collective perception is the temporal alignment of

data followed by the coordinate system alignment to the

coordinate system of the ego vehicle [15]. As these two

processing steps are the least computationally intensive in

collective perception, these two delays are represented by

the data alignment delay as shown in Figure 1. After data

alignment, similar to local perception, the received objects

have to be associated with the object tracks present in the

ego-local environmental model. This results in the matching

delay. After associating the ego-local object tracks with the

cooperatively perceived ones the tracks have to be fused,

which leads to a delay for this track-to-track fusion step.
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Fig. 1. Visualization of all delays in the collective perception pipeline. For visibility reasons, the proportions of visualized delays do not correspond to
the proportions of observed delays from Table II.

Implementation of perception-based delays: the

perception-based delays depend on the used processing

algorithms and the number of perceived objects. For an

adaptive use of the perception based delays, three possible

delay representations for each processing component are

introduced. An online delay do, a static offline delay ds, and

a dynamic offline delay dd. Each detected object o within

the simulation has a timestamp t and delay d. d is the

accumulated delay of all processing steps of the pipeline.

The online delay do uses the actual delay per processing

component. To reduce the influence of the processing over-

head of the proposed framework only the actual processing

time of the single components, i.e., matching will be mea-

sured. The online delay is strongly dependent on the used

simulation hardware but has the advantage to represent the

data dependencies in delays most accurately.

The static offline delay ds(µ, σ) is defined by the mean

µ and standard deviation σ per processing component. The

actual delays are assessed by using a Gaussian distributed

random variable defined by N(µ, σ). This allows to incor-

porate different processing delays as if the algorithms were

executed on hardware which is actually used in autonomous

vehicles. However, the static offline delay cannot represent

the data dependent execution times, i.e., that matching a

larger amount of detected objects takes longer than matching

only few objects.

To combine the advantages of static offline delay and

online delay, the dynamic delay is introduced to incorporate

the data dependencies. The dynamic delay is defined as

dd(n, µ, σ), where, n is the sum of tracked objects in the

environmental model and newly detected ones. µ and σ are

the respective mean and standard deviations of the processing

times per object in each processing component. Again, a

Gaussian distributed random variable N(µ, σ) is used. This

leads to:

dd(n, µ, σ) =

n
∑

i=0

N(µ, σ).

Delay due to V2X communications: the delay caused

by V2X communications implementing the ITS-G5 protocol

stack mainly depends on four different components: an

introduced synchronization buffer, Decentralized Conges-

tion Control (DCC), Enhanced Distributed Channel Access

(EDCA) at the MAC layer, and the duration of transmission

of a packet. Notice that within the scope of this paper, we

did not consider security related and CPM decoding delays.

Before including objects in a newly generated CPM, the

CP service should wait for the local perception pipeline to

finish. This reduces the number of objects which will be

included in the next CPM and therefore also reduces delays.

Hence, a synchronization buffer is introduced. This buffer

must be selected such that an object is postponed to the

next CPM as rarely as possible. Not being included in the

current CPM would increase the overall delay of an object

by the CPM generation interval tCPM. At the same time the

synchronization buffer should be chosen as small as possible.

Finding the optimal size of the synchronization buffer can

be specified as optimization problem:

min
x∈R+

plate(x) · (tCPM − σ · x) + (1− plate(x)) · σ · x (1)

x is the variable to optimize and defines the number of

standard deviations of the local perception delay which will

be used to specify the size of the synchronization buffer. plate

is the probability that an object is too late to be included in

the current CPM. It is defined as plate(x) = 0.5·(1−erf( x√
2
)),

where erf is the error function evaluated at a given sigma x.

σ represents the standard deviation of the local perception

pipeline, tCPM is the generation interval of CPMs which was

set to 100ms. Equation 1 is plotted in Figure 2. The optimal

number of standard deviations x is 2.7 which results in a

synchronization buffer of 2.67ms.
The delay introduced by DCC depends on the current CBR

and the priority of services generating messages on the same

channel. Considering the adaptive DCC approach [19], if the

channel load is low and only the CP service is using the

channel, it is not expected that DCC will introduce additional

delay [20]. In the case of the channel starting to be congested,

DCC will start regulating the message transmission rate. In

other words, DCC at the access layer will introduce a delay

up to 1 s. If a message is delayed more than 1 s by DCC, the

message will be dropped before being transmitted.

Regarding the EDCA delay, it depends on the traffic class

of the message and how many vehicles are within sensing

range and trying to transmit on the channel. As shown in



Fig. 2. Optimization function for finding the optimal number of standard
deviations (σ) to specify the synchronization buffer. Red cross marks
optimal synchronization buffer in σ.

[21], the EDCA delay should not be higher than a few ms
in our simulations. However, it should be noted that in case

of a congested channel, the EDCA delay would increase

exponentially. It is worth mentioning that the medium access

delay of IEEE 802.11p is generally considerably lower than

that of Cellular-V2X in autonomous mode based on its

Semi-Persistent Scheduling (SPS) mechanism. The latter is

governed by the “selection window”, which in turn is a

function of the maximum tolerated latency and corresponds

to the CPM generation period. SPS selects the most favorable

resource within the selection window, thus leading to an

additional delay of up to 100ms.

The air time or equivalently the duration of a packet

transmission in a channel depends on the packet size and

the channel datarate. In our simulation, the channel datarate

is 6Mbit s−1. The packet air-time is determined by the

following contributions: 0.04ms (Physical layer) + (34B
(MAC header) + 2B (LLC header) + 40B (Geonetworking

Single Hop Broadcast header) + 4B (BTP header) + CPM

size) / 6Mbit s−1 (channel datarate). The CPM, as defined

in [1], is composed of multiple containers: ITS PDU Header

+ Management Container + Originating Vehicle Container

(45B), sensor information (15B, once per second), object

container (48B per object) and an optional freespace adden-

dum. For example, for a CPM containing 12 objects (max-

imum number of objects included in a single CPM in our

simulations), the message with all headers and the CPM has

a size of 716B. The resulting air-time is approximately 1ms.
It should be noted as well that the European standard [22]

states that the maximum duration of a transmission on the

channel shall not be higher than 4ms.

V. SIMULATION FRAMEWORK

In this section we review our enhanced processing pipeline

of the RESIST [5] simulation framework as illustrated in

Figure 3. The main improvements compared to the original

framework are the following: a thorough consideration of the

MAC and physical layer, a per component based delay, the

realization of ETSI CPM generation and inclusion rules, con-

sidering the CBR-dependent packet interference and collision

effects to determine if a message could be correctly decoded

or not, and improved detection and matching algorithms.

C) Local Perception

D) V2V Communication

E) Cooperative Perception

Inclusion rules

CPM generation

CBR

Fig. 3. Illustration of the improvements made to the original simulation
framework. Main contributions are data-dependent delays for each process-
ing step, realistic V2X communication modeling and enhanced perception
algorithms.

A. V2X Simulation

For simulating the V2X communication channel, all pack-

ets to be transmitted by the cooperative vehicles within the

simulation have to be identified. Afterwards the probability

of detection for each packet has to be calculated according to

the current CBR and distance between sender and receiver.

Each cooperative vehicle may generate a CPM every

transmission interval tCPM. The perceived objects, which will

be included to a CPM are going to be restricted by the ETSI

inclusion rules [1]. If no object is detected or none fulfills the

inclusion rules no CPM will be generated. We incorporate

the inclusion rules for position change rpos, velocity change

rvel, change of course rcourse and the maximum transmission

time for vehicles rt,veh and vulnerable road users (VRUs)

rt,vru. The position change rpos defines a minimum change

of position of a perceived object before it is allowed to be

included in a CPM again. Similarly rvel and rcourse define

a minimum change in velocity or change in direction of

driving. The dependence on the type of detected object rt,veh

defines the longest allowed time for a vehicle to not be

included into a CPM respectively rt,vru for VRUs. The track

IDs idtrack of the vehicle local perception systems are used

to identify the same vehicle and apply the inclusion rules. If

an object fulfills all inclusion rule checks it is included into

the CPM. This check will be repeated for every cooperative

vehicle which has perceived data in the current transmission

interval of tCPM.

The next step is to determine the size of all generated

CPMs to calculate the channel load. The size of a CPM is

determined by the static and dynamic information included.

The static information sstatic is composed of all headers as

defined in IV and the Originating Vehicle Container. The

dynamic information is composed of the sensor information

ssensor(c), which is transmitted once per second for each

cooperative vehicle c transmitting a CPM and the number

of detected objects. The size of CPM i to be transmitted in

the transmission window ∆t is defined as:

sizecpm(i) = sstatic + 48B · objs(i), (2)



where objs(i) is the number of objects contained in CPM i.

The size of all generated CPMs at within transmission

window ∆t is therefore:

size(∆t) =

N
∑

i=0

sizecpm(i), (3)

where N defines the number of CPMs transmitted within

transmission window ∆t. Subsequently, the generated data

rate density, i.e., the data generated per time and area, can

be obtained with:

dr =
size(1 s) +

∑

ssensor(c)

1 s ·A
, (4)

where A is the transmission area of the scenario. If the simu-

lation time is below 1 s, the current data rate will be scaled to

1 s. The corresponding channel load is then computed based

on the analytical model of IEEE 802.11p developed and

validated with Veins by Sepulcre et al. [23]. Finally, to spare

computation resources, the packet delivery ratio (PDR) is ob-

tained from a look-up-table generated based on the published

source code of the previously mentioned model. The look-

up-table links transmitter-receiver-distance, generated data

rate density, CBR and PDR. For each transmitted CPM the

reception is computed by generating random numbers and

turning them into Boolean by using the reception probability

as comparison threshold.

B. Perception Pipeline

The perception pipeline is based on the original pub-

lication [5]. For the vehicle local perception an image-

based object detection is employed. Compared to the original

publication YOLOv3 [24] was used instead of Faster R-

CNN [25] for object detection as it provides higher object

detection accuracy and 2.3 times faster processing speed on

our test system. A L-shape based object detection provided

by [26] is used to estimate the 3D position from the detected

two dimensional bounding box together with the depth image

provided by the used simulator [27].

After object detection the association of the newly detected

objects to already tracked objects within the environmental

model has to be done. The original framework used a nearest

neighbor matching, which has the problem of not finding

a global optimal solution. Hence, the Hungarian algorithm

was applied for matching as it is able to find the global

optimal solution for an assignment problem. Instead of using

the Euclidean distance for the association of objects with

already existing tracks, the Intersection-over-union (IoU) was

used. However, the IoU cannot be used directly as association

cost for the Hungarian algorithm as the higher the IoU the

better the result. This is contrary to the goal of the Hungarian

algorithm that tries to find the global optimum by minimizing

the total cost. To solve this problem we defined the cost as:

CIoU =

{

(1 − IoU(track, o)) ·m IoU(track, o) > 0,

1000 otherwise.
(5)

Where IoU(track, o) defines the original IoU of an already

managed track in the environmental model and a newly

Fig. 4. Snapshot of the simulated highway scenario. The left image shows
the birds-eye-view of the ego vehicle’s environment and the right image
presents the camera sensor view of the ego vehicle. The red and green
boxes indicate the local and the collective perception, respectively.

TABLE I

SUMMARY OF THE SIMULATION PARAMETERS

Parameter Values

CPU Intel-Core i7-7700K
RAM 32 GByte
GPU RTX 2080Ti

Protocol stack ITS-G5
CPM generation interval [100ms, 1 s]

Inclusion rule parameterization:
rpos 4m

rvel 0.5m s−1

rcourse 0.07 rad
rt,veh 1 s

rt,vru 0.5 s

Scenario Highway (6 lanes) from [5]
Density of vehicles 100 veh/km

(50 veh/km per driving direction)
Vehicle sensor equipment 1 camera, 30° FoV,

placed centrally on the windshield
Number of vehicles in scenario 20

Length of simulation 25 s

Equipment Rate (ER) {10, 25, 50, 75, 100}%
Number of repetitions 1, 000

detected object o, and m is the maximum allowed association

cost. After association of the objects, a Kalman Filter with

constant velocity model is used for tracking. Next, the com-

munication channel is simulated as described in Section V-

A. For collective perception the communicated data has to

be temporally aligned to the ego-vehicle‘s local perception.

Afterwards a coordinate system transformation to the vehicle

local coordinate system of the ego vehicle is performed.

The cooperatively perceived vehicles will be associated with

the Hungarian algorithm and get fused with a track-to-track

fusion into the environmental model of the ego vehicle as

already introduced in [5].

VI. EVALUATION

For evaluation a six lane highway scenario as depicted in

Figure 4 was used. Table I shows the parameters used in the

evaluation of the simulation framework explained in IV. To

evaluate the environment perception only the three lanes in

the direction of travel were considered. This reduces errors



TABLE II

OBSERVED DELAYS FOR A SINGLE SIMULATION RUN.

Delay Mean [ms] Stdev [ms]

Object detection 14.48 0.85
Local matching 0.97 0.51
Local tracking 0.04 0.02

Synchronization buffer 2.67 0.00
Channel access 1.50 0.50
Airtime 0.54 0.07

Data alignment 0.02 0.02
Cooperative matching 4.79 3.23
Cooperative track fusion 0.12 0.10

due to objects exiting the sensors FOV as only a forward

facing camera per cooperative perceiving vehicle was used.

For communication the ITS-G5 protocol stack was used. The

results presented in the following of this section are collected

at a determined vehicle in the simulation scenario.

A. Delays

To evaluate the perception pipeline delays we first mea-

sured the online delays as introduced in Section IV for the

whole simulation run. The mean and standard deviations for

the online delays are shown in Table II. It has to be noted

that the delays for the local fusion component are not listed

as our simulation only includes a single sensor. Therefore, no

fusion for local perception has to be performed. The observed

µ and σ values can be used for static offline simulation.

Also, the measured processing times are strongly dependent

on the hardware used for running these tests. Therefore, we

list the hardware specifications in Table I. We have observed

that aside of object detection and communication, the delay

for matching was the most dominant part of the perception

pipeline with a mean of 0.97ms for local matching and

a mean of 4.79ms for cooperative matching. For further

investigations, we considered the online delays only as they

represent the most realistic representation of data dependen-

cies in the processing pipeline. By using the dynamic offline

simulation the obtained results could be easily transferred to

a different hardware by measuring execution times on these

components and identifying the hardware dependant delays

per object as introduced in Section IV.

The synchronization buffer for the object inclusion is the

largest of the delays caused by the V2X protocol stack,

followed by EDCA. The maximum observed CBR was not

higher than 0.3 (see VI-B) which is not enough for DCC

to start actively restricting the CPM generation rate and the

maximum observed packet air-time was 1 ms.

B. Metrics

Matching: on average, the number of objects included per

CPM is around 5, independent of the equipment rate (ER).

The average miss-matching of objects is 9.6% which results

in around 3.5 miss-matched objects per vehicle per second. A

miss-match happens when a detected object is not associated

to the correct object track or when a new track is created

while the object is already tracked. Wrong object association

Fig. 5. CBR for different equipment rates. A significant increase of CBR
with increased equipment rates was observed.

Fig. 6. CPMs generated per vehicle per second for different equipment
rates. The number of generated CPMs per vehicle is almost constant.

is the consequence of bad sensor measurements in complex

vehicle configurations. Losing track of objects may be due

to either bad measurements or when the object moves out

of the detection range of the sensor. In both cases, miss-

matching impacts the CP inclusion rules. Indeed, a miss-

matched object can be considered as newly detected and

will be included in the next CPM generated. This artificially

increases the number of detected objects and potentially

creates more CPMs.

Channel Busy Ratio is a time-dependent value between

zero and one representing the fraction of time that a single

radio channel is sensed busy. If the CBR = 1, it means that the

channel is sensed fully loaded. Figure 5 shows the obtained

results. At an Equipment Rate (ER) of 100%, the maximum

CBR is at around 0.3. When comparing to results obtained

in the ETSI TR about CP [1], the magnitude of the CBR

matches with the CBR obtained in the TR analysis (CBR

between 0.3 to 0.36 with a vehicle density of 120 veh/km in

an highway scenario).

CPM rate is the number of CPMs transmitted per second

per vehicle in average. Figure 6 shows the obtained results.

Each vehicle transmits about 7 CPMs per second. Only with

low ER the median of CPMs per second is slightly higher.

This is due to the structure of the data. The mean however for

10% ER is at 8.5 CPMs per second. The observed median

CPMs per second show a slight decrease with higher ER.



Time between updates & redundancy: Figure 8 shows

the average time between two updates of the same ob-

ject on the communication channel. The maximum time

until the next update can reach up to 9.5 s. With 100 %

ER the maximum update time drops significantly to 0.4 s.
This clearly shows the benefit of collective perception with

high ER rates. Furthermore, the mean between two updates

decreases from 0.243 s for an ER of 10% to just 0.056 s
for 100% ER. While it is important to receive periodic

updates about objects, unnecessary communications should

be avoided. Figure 7 shows the number of updates received

per second in average of a same object. The higher the

ER, the higher the redundancy of information. Some objects

can be received more than 20 times per second. To better

control the information exchanged on the channel, some of

the proposed redundancy mitigation rules explained in [1]

should be used and will investigated in further work.

End-to-End (E2E) delay is explained in Section IV. It is

the difference between the time of the sensor measurement

the object originated from and the time when it was merged

into the environmental model. Figure 9 and Figure 10 show

the local E2E delay and the cooperative E2E delay respec-

tively. Not only the cooperative E2E delay increases with

higher ER but also the local E2E delay increases. This is

caused by the higher number of objects being present in

the environmental model, resulting in more computational

load for matching and track updates. The mean of the local

E2E delay increases by 2.21ms from 15.05ms for ego

perception only to 17.27ms for an ER of 100 %. For the

cooperative E2E delay an increase of 14.10ms was observed.

The mean E2E delay increased from 118.59ms from 10 %

ER to 132.70ms for 100 % ER. The increase in cooperative

E2E delay comes partially from medium access times in the

communication channel and from the computationally more

intense perception pipeline including matching and tracking.

Age of Information represents the average age of in-

formation present in the environmental model of the ego

vehicle. The age of information is the difference between

the timestamp of the last perceived sensor measurement of

an object and the current time. This metric was assessed for

all present objects in the environmental model every 100ms.
This metric includes locally and cooperatively perceived

objects. The observed ages of information are shown in

Figure 11. The biggest increase in age of information is

caused by moving from ego perception only to collective

perception. Making use of collective perception with 10%
ER increased the mean age of information from 135.17ms
to 207.19ms. Increasing the ER further to 100% increases

the average age of information to 268.99ms. The strongly

visible clusters every 100ms are resulting from the sensor

frequency of 10Hz.

VII. CONCLUSIONS & FUTURE WORKS

In this paper we have presented a comprehensive frame-

work for collective perception, which incorporates realistic

delays for every processing step within a perception pipeline.

We performed simulations using an highway scenario and

Fig. 7. Object redundancies per second for communicated objects for
different equipment rates.

Fig. 8. Time in milliseconds between two updates of the same object on
the communication channel for different equipment rates.

Fig. 9. End-to-End delay for vehicle-local perception. The observed delay
increases with increasing equipment rates.

showed that not only the cooperative E2E delay increases

with higher ER but also the local E2E delay increases. This

comes due to the higher number of objects being present in

the environmental model, resulting in more computational

load for matching and track updates. In addition, the in-

creased computational effort in the processing pipeline due

to the larger number of objects can be considered. We have

shown how different values of the equipment rate affect the

End-to-End delay of the collective perception as well as the

local perception. Due to the higher number of processed

and transmitted objects with a growing equipment rate, the



Fig. 10. Cooperative End-to-End delay. A significant increase of delay
was observed with higher equipment rates

Fig. 11. Age of information in the environmental model of the ego vehicle
including locally and cooperatively perceived objects.

delays for collective perception but also for local perceptions

increase. Furthermore, we introduced an optimal synchro-

nization buffer to improve collective perception delays such

that the overall delay gets reduced and locally perceived

objects will rarely be postponed to the next CPM generation

interval.

In future work we will add a multi-sensor setup for the

simulated vehicles and use improved heterogeneous per-

ception algorithms. This allows an even better reflection

of reality and a more realistic evaluation of CP services.

Additionally, we will compare the simulation by using Artery

with the same scenario and consider security for the com-

munication channel. The presented simulator represents an

important contribution for standardization at ETSI to support

the numerous study groups for the CP services.
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