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Abstract—For robust object detection on LiDAR data, neural
networks have to be trained on diverse datasets that contain
many different environmental influences like rain, snow, or fog.
To this date, few datasets, with those features, are available
while there exist many datasets recorded under perfect weather
conditions. Repurposing those datasets by simulating adverse
environmental conditions on top of them and training networks
with the resulting enhanced datasets, is intended to lead to more
robust neural networks. In the following we propose models to
realistically simulate the effects of rain, snow, and fog on LiDAR
datasets based on physical and empirical fundamentals. Then we
parameterize our simulation to best fit real LiDAR data that
was captured in those environments, in order to achieve a highly
accurate simulation. Finally, the impact of adverse weather on
neural network detection performance is demonstrated.

I. INTRODUCTION

Establishing trust in autonomous vehicles is becoming a
major task for car manufacturers all over the industry. In the
light of multiple prominently discussed collisions involving
self driving cars, not only regulators and lawmakers are
watching with caution—potential customers are also having
second thoughts on trusting their well-being on apparently
untrustworthy systems.

Important to realize is, that driving to work or to shop is
already a relatively dangerous task. In Germany, a country
of 83 million inhabitants, 2.7 million road accidents occur
every year—injuring over 380,000 people and killing over
3,000 [1]. Many of those deaths are avoidable, as 40% of
fatal accidents at least involve alcohol, distraction, drugs, or
fatigue [2]; factors that are not immediately relevant when
driving an autonomous vehicle. Human error is responsible
for over 90% of all crashes. With that in mind, taking drivers
out of the equation might make traffic safer overall.

Increasing the miles traveled without incident also increases
the trust in autonomous systems [3]. So to regain the trust
that has been lost in autonomous vehicles, carmakers have
to create safe and well tested products that prove themselves
over time. Utilizing established standards for automotive safety
processes like ISO 26262 can help achieving this goal. Due
to machine learning algorithms being deployed in virtually all
autonomous vehicles, verification of those algorithms regard-
ing strict standards is becoming a key task. Neither can the
used algorithms be fully explained, nor their behavior fully
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predicted—especially in adversarial conditions like intense
weather or malicious attacks [4].

In this paper, we propose models to generate more diverse
LiDAR datasets that can be either used for performance
characterization of LiDAR-based object detection or its robust-
ness improvement against environmental influences. Thus, we
simulate weather conditions, especially heavy rain, thick snow,
and dense fog realistically. This enables the reuse of existing
datasets which do not contain adverse weather conditions by
extending them with the desired environmental conditions.
Therefore, the proposed approach drastically reduces the time
to gather diverse datasets for training robust neural networks,
as no additional real world test drives are needed to capture
this data.

Section II investigates current state of the art for simulating
environmental conditions on LiDAR data. Sections III to V
address our proposed models for simulating rain, snow, and
fog respectively. In Section VI the influence of these adverse
weather conditions on LiDAR object detection are evaluated.
Section VII concludes this paper and provides an outlook.

II. RELATED WORK

Having robust algorithms which allow an autonomous ve-
hicle to correctly perceive the environment even in adverse
environmental conditions is a key requirement to enable fully
autonomous vehicles. Especially for the development and
verification of such algorithms the used data needs to contain
as many different scenarios and environmental conditions as
possible to guarantee robustness.

A. Impact of adverse weather on LiDAR

The impact of adverse weather conditions on LiDAR sensor
data results from different phenomena that occur because of
the interaction between the laser beam and the raindrops,
fog droplets, or snowflakes. LiDAR point clouds which were
recorded under adverse weather conditions show less points
compared to the ones recorded under clear weather conditions
in the same scenario. This is due to absorption and scattering
of the laser beam at the particles [5], [6].

Another observation is the occurrence of false points in
front of the sensor caused by backscattered light from the
particles in adverse weather [7], [8]. Moreover, the intensity
of the reflected light is affected by the weather condition. On
the one hand, the intensity might be increased by an increase
in the reflectivity of a surface, for instance by snow covered
roads compared to clear roads. On the other hand, the intensity



might decrease because of a partial absorption or scattering of
the laser beam or the reduction of the surface reflectivity, as
it is the case for wet surfaces [9].

B. Datasets

Existing datasets like the well-known KITTI [10] or the
more recent Appollocscape dataset [11] offer no environmental
variation in LiDAR data. Most data is captured during good
weather conditions. Hence, training neural networks with such
data does not result in robust algorithms as the performance
of neural networks heavily depends on the dataset used for
training. Diverse datasets are essential for training neural
networks to be robust [12]. Other datasets offer recordings
during rainfall (Waymo [13]) or even in harsh conditions like
dense fog or heavy snowfall (DENSE dataset [14]). These
datasets are the better choice for training neural networks.
However, when it comes to evaluating the impact of adverse
weather conditions on LiDAR-based object detection it is
important to have knowledge about the intensity of the current
weather, which is lacking in parts of these datasets. Otherwise,
the algorithms’ robustness cannot be determined. Additionally,
the evaluation is restricted to the scenes and conditions present
in these datasets.

C. Artificial weather

Another approach, compared to capturing adverse weather
conditions through real world test drives, is to simulate these
desired conditions. Zang et al. [7] investigated the influences
of adverse weather conditions to different sensors like LiDAR,
camera, RADAR, or GPS. They simulated attenuation and
backscatter effects to estimate detection ranges at different
rain rates for RADAR. Different signal to noise ratios for fog,
snow, and rain for LiDAR sensors were evaluated by Hespel et
al. [15]. Filgueira et al. [16] focused on investigating the influ-
ence of rain on LiDAR performance. Turbulent snow influence
on LiDAR was analyzed by Jokela et al. [17] by driving a test
vehicle behind another vehicle on snowy roads. Hasirlioglu et
al. [18] used an indoor fog simulation facility with different
fog layers to analyze the effect on LiDAR sensors. Similarly,
Heinzler et al. [5] examined the influence on classification with
LiDAR sensors in rain and fog with the CEREMA weather
simulation facility and real world recordings. The performance
of multiple LiDAR sensors in dense fog was evaluated by
Bijelic et al. [6]. They made recordings in the CEREMA
facility with different settings for each sensor and at varying
fog intensities. All these approaches to evaluate the sensor
performance either use theoretical attenuation models, lacking
validation against real-world data, or use real-world test drives
or an indoor weather simulation facility, which are restricted
to the evaluated scenarios.

The CEREMA facility was also used by Li et al. [19] to
analyze the effect of fog on LiDAR-based object detection.
They tried to predict the object detection quality for given
reflectivities and object distances. Influences of rain, snow,
and fog on LiDAR were investigated by Rasshofer et al. [8].
They recorded the backscatter signal of a LiDAR target in a

foggy environment and replicated it with their electro-optical
laser target simulation. Therefore they were able to replay
the recorded scenario for different LiDAR sensors. Still, the
presented laser target simulator is not as easily adaptable as
simulating a LiDAR point cloud in a virtual environment.

Hasirlioglu et al. [9] showed an approach to simulate rain
on automotive surround sensors including LiDAR. They used
a noise filter of distributed spheres in the sensor’s field of
view, whose sphere sizes were determined by a raindrop size
distribution. Afterwards ray tracing was performed on this
noise filter: the beam divergence is approximated by gener-
ating multiple rays per point into the point cloud at an offset
angle. Points in the point cloud were then modified if enough
rays intersect with the noise filter. However, this approach
only manipulates the point cloud by moving points closer
towards the sensor. For a more realistic simulation points also
need to be removed. Additionally to the model presented by
Hasirlioglu et al. the simulation approach for rain by Goodin
et al. [20] is not only capable of modifying points but also of
removing them. Hadj-Bachir and de Souza [21] presented a
simulation of rain and fog for virtual environments. However,
their method lacks the theoretical basis and similarly to the
method of Goodin et al. an optimization of the simulation
with real rain is missing.

III. RAIN SIMULATION

For the simulation of rain on point clouds we used the
approach introduced by Hasirlioglu et al. [9] with some
improvements. By modeling rainfall in the sensor’s field of
view they generated a noise filter. It consists of spheres, which
represent the raindrops. To each drop a three-dimensional
position in the sensor’s field of view is assigned. The sizes of
the raindrops were determined by a raindrop size distribution.
This noise filter is then used for ray tracing. In order to take
the beam divergence into account there are multiple generated
rays per point with an offset to each other. The point cloud is
modified by setting scan points closer to the sensor if the hit
ratio for a point is above a threshold.

In the same manner as in [9] we used a noise filter consisting
of spherical raindrops on which ray tracing is performed. The
raindrop positions are uniformly distributed in the sensor’s
field of view. Instead of the proposed maximum diameter of
8.5mm as in [9] we limited the size of each raindrop to 6mm
since this is the largest diameter for a stable raindrop [22].
Furthermore, we assumed the laser beam of the sensor to be
circular instead of rectangular, which corresponds better to the
real beam shape [23].

Each ray is calculated by interpreting a scan point P as a
vector P⃗ and rotating P⃗ around the rotation vector R⃗. The
initial R⃗ is the cross product of P⃗ with the Z axis, the offset
angle δ is given by

δ =
ϕ

2 ·Nr

where ϕ is the beam divergence in degree and Nr the number
of rays in the circle’s radius. R⃗ is then rotated around P⃗ , the
angle of rotation α is given as α = 360◦/Nc where Nc is the
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Fig. 1: Beam divergence visualization with Nr = 2 and Nc =
12. The red center point is the original point from the point
cloud, pointed at by P⃗ . The gray dots represent the end points
of the rays which were generated.

number of lines in the circle starting from the center point.
As can be seen in Fig. 1, the ray generation process results
in a starlike shape with the original point in the center. Each
ray is then checked for potentially hitting a raindrop in the
noise filter. As suggested by Hasirlioglu et al. a scan point is
modified if the hit ratio Rall of the rays from this point with
the noise filter is over a certain threshold Tall. The hit ratio is
calculated as

Rall =
Nintersects

Nrays

where Nintersects is the number of rays that intersect with
raindrops and Nrays is the total number of rays sent around a
single point. In the approach of Hasirlioglu et al. the point is
then set to the closest intersection with the noise filter, whereas
we introduced another threshold for the ratio Rmost, defined as

Rmost =
Nmost

Nintersects

where Nmost is the number of rays intersecting the raindrop
with most intersections. If Rmost is larger than a certain
threshold Tmost the point is set towards the sensor; if it is
lower the scan point is deleted to cover the loss of scan points
caused by absorption and scattering. Another improvement
was to place the points at the position of the raindrop with
most intersections, instead of the closest intersection, since
this is the hit with the highest expected intensity.

IV. SNOW SIMULATION

The snow simulation is—like the rain simulation—based
on ray tracing. The sizes of the snowflakes were estimated
by the distribution from Gunn and Marshall [24] with the
optimizations of Sekhon and Srivastava [25]:

N(D) = N0 · e−Λ·D

N0 = 2500 ·R−0.94 m−3 mm−1

Λ = 2.29 ·R−0.48 mm−1

where R is the precipitation rate and determines the snowflake
size distribution N(D) of diameter D.

As this distribution describes the molten diameter, a scaling
factor was used to get the real diameter of the snowflakes.
This factor depends on the shape of the snowflakes and ranges
between 1 and 5 [26]. A low scaling factor should be used
for snow with high water content, whereas a high scaling
factor should be used for dry snow, especially for dendrites
or aggregated dendrites. The number of snowflakes can be
calculated with the mass concentration Ms [27]:

Ms =

{
0.30 ·R dense snowfall,
0.47 ·R light snowfall.

Further, to calculate the number of snowflakes Ns per unit
volume, the mass concentration was used [28]:

Ns =
Ms

md
,

where md is the average mass of the snowflakes.
From observations of the DENSE dataset we found that

the intensities of false points resulting from snowflakes are
lognormally distributed. The probability distribution function,
which was obtained by fitting the false point intensities in the
dataset, was defined as follows:

I(x) =
1

(x−Θ)σ
√
2π

· exp

(
−
(
ln x−Θ

m

)2
2σ2

)
,

where Θ denotes the shift of the distribution, σ is the standard
deviation and m is a scaling parameter. These three parameters
are determined numerically; more on that in VI-A2. The
intensity of the remaining scan points was increased by 25%
for snowy surfaces or reduced by 10% for wet surfaces.

V. FOG SIMULATION

In fog, the number of droplets per unit volume is very
high compared to rain, being in the order of 100 cm−3. This
is 105 times the number of drops in rain which typically is
at 0.001 cm−3 [8]. Because of this huge amount of droplets
in fog a ray tracing approach to simulate the effects on
LiDAR is not practical due to the enormous computational
effort. Instead, we propose an efficient probabilistic model for
simulating fog effects on LiDAR, assuming evenly dense fog.
We used different probabilities and distributions to modify
point clouds which were recorded in clear weather, so that
they matched the characteristics of fog influence on LiDAR.

First we selected points for modification. To calculate the
probability that a point is modified we used an exponential
function depending on the distance of the point from the sensor
d, since the attenuation in fog is increasing exponentially with
the distance traveled [29]:

pmodify(d) = 1− e−d·ϵ.

Here, ϵ is a scaling parameter, whose value is explained in
section VI.

If a point in the point cloud was chosen for modification,
this point was either deleted to fit the reduction of points in
adverse weather, or the point was moved towards the sensor to



fit the occurrence of false points due to back scattering. The
probability that a point was deleted was determined by

pdelete = a · eb·V + 1,

where a and b are parameters and V is the meteorological
visibility in m. If a point was chosen to be modified but not
chosen to be deleted, it was moved.

In the event that the point was moved towards the sensor, the
new distance of the point was determined by the probability
distribution function

f(x) =
1

λ
· exp (− 1

λ
· x),

where λ is an empirically determined parameter explained in
section VI. To make sure no point was set within the minimum
distance dmin the sensor can measure, dmin was added to the
new point distance.

The intensity of the moved points was randomly set to 0–
32% of the maximum intensity, while the intensity of the
unaltered points was calculated with the law of Beer and
Lambert as

I(d) = I0 · e−γd,

where I0 is the original intensity, d is the traveled distance in
fog and γ is the extinction coefficient from [30]

γ =
− ln(0.05)

V
.

Since LiDAR is an active sensor, the traveled distance is twice
the distance to the scan point.

The parameters ϵ, a, b, λ for the equations used in this sec-
tion were obtained by modifying point clouds captured in clear
weather until they best match point clouds in foggy weather
with known intensity. For this we used the recordings from
Bijelic et al. [6] in the CEREMA fog chamber. To compare the
simulated point clouds to the real ones we used two different
metrics. One is the widely known chamfer distance

CD(P,Q) =
∑
p∈P

min
q∈Q

||p− q||22 +
∑
q∈Q

min
p∈P

||p− q||22

where P and Q are two point clouds [31]. Additionally, we
used a metric which compares the point density by distance
in the point cloud. For this metric the distance distribution for
both point clouds is calculated, then those distributions are
compared by the Wasserstein metric [32].

The simulation parameters were adjusted to minimize the
distance between the simulated point clouds and the real point
clouds for each metric separately.

VI. RESULTS

In this section we first present the parameterization of our
weather simulations to match real adverse weather conditions.
In addition to the final model parameterization, the influence of
adverse weather conditions on LiDAR-based object detection,
including the influence on different object classes, will be
evaluated.

(a) Original point cloud from the KITTI dataset in birds eye view

(b) Added rain with R = 4mmh−1, Tall = 0.15, Tmost = 0.8.

(c) Added snow with R = 4mmh−1, Tall = 0.6, Tmost = 0.2.

(d) Added fog with V = 80m.

Fig. 2: Influence of rain, snow, and fog on a point cloud. The
color of the points indicates the intensity.

A. Model parameterization

In order to generate realistic weather conditions we used
the DENSE dataset by Bijelic et al. [14] to parameterize
our proposed weather simulations. The DENSE dataset is an
adverse weather dataset containing real world test drives and
fog chamber recordings. In contrast to other available datasets,
this dataset also includes heavy rain, snow, and fog. We
adjusted the parameters in our models to best fit the recordings
under these conditions. For snow we used the available real
world test drives and for rain and fog the captures of the
CEREMA weather simulation facility.

1) Rain: To achieve a realistic modification of the intensity
values of the LiDAR point cloud during our rain simulation we
analyzed the present intensity values of the DENSE dataset.
The parameters and thresholds were then set based on these
empirical findings. Since the intensity of false points is under
0.5% of its maximum for 99.3% of the points, we set the
intensity from 0–0.5% with a uniform distribution. The re-
maining scan points were set to 90% of their original intensity
because of the reduced reflectivity of wet surfaces as suggested
by Hasirlioglu et al. [9]. Furthermore we parameterized the



thresholds for the rain simulation with Tall = 0.15 and
Tmost = 0.8. For the parameters of the beam divergence
approximation Nr = 5, Nc = 20, and ϕ = 0.1146◦ was used.
The resulting plot for the rain simulation on a point cloud from
the KITTI dataset is shown in Fig. 2b. The raindrop sizes were
determined by the Feingold-Levin lognormal distribution [33].
Apart from this distribution one could also use other drop
size distributions such as the Marshall-Palmer [34] or the
Deirmendjian distribution [35] which we compared in Fig. 3.

2) Snow: From examinations of the DENSE dataset we
found the probability distribution function for false point
intensities in Section IV. The parameters for this lognormal
distribution were:

σ = 0.649, Θ = 0.105, m = 0.204.

For the purpose of finding the intensity of the remaining points
we compared recordings on roads covered in snow with clear
road recordings. The intensity on snowy roads was about 25%
higher on average than on clear roads. The thresholds for
snow simulation were set to Tall = 0.6 and Tmost = 0.2. The
impact of 4mmh−1 snow is shown in Fig. 2c. In this plot
the light snow variant with a size scaling of 2 and an average
snowflake mass of 2mg was used. The parameters for the
beam divergence approximation were the same as for rain.

3) Fog: For parameterizing the fog we used the two metrics
presented in Section V to fit our simulation with the recordings
of the DENSE dataset. The parameters we obtained from the
two metrics are shown below. First the scaling parameter ϵ for
the point modification probability was obtained:

ϵ =

{
0.23 · e−0.0082V chamfer metric,
0.32 · e−0.0220V distance metric,

where V is the meteorological visibility in m. Second we
found the λ parameter for the probability distribution function
used to determine the new distance of a modified point:

λ =

{
−0.00600 · V + 2.31 chamfer metric,
−0.00846 · V + 2.29 distance metric.

Lastly the parameters for the probability to delete points from
the point cloud were fitted:

(a, b) =

{
(−0.70,−0.024) chamfer metric,
(−0.63,−0.020) distance metric.

The intensity of scan points due to back scattering in the
evaluated dataset is below 32% of the maximum intensity for
95.7% of the points, so we set the intensity of false points
from 0–32% with a uniform distribution. A point cloud after
the fog simulation with 80m visibility and the parameters from
the chamfer optimization is shown in Fig. 2d.

B. Impact on LiDAR-based object detection
To evaluate the influence of rain, snow, and fog on LiDAR-

based object detection the state of the art CNN PointPil-
lars [36] implemented by [38] was used. The network was
trained on the KITTI 3D object detection dataset without

weather simulations [37]. As dataset KITTI’s raw data record-
ings [10] were chosen. The evaluation was restricted to only
those recordings of the KITTI raw dataset which had a
duration of at least 30 seconds and contained at least 10
labeled objects. Additionally we used the first 300 frames of
the KITTI 3D object detection dataset [37] as it incorporates
more pedestrians and cyclists. This allowed us to analyze the
impact on different object classes.

Two different metrics were used for performance assesment.
The first one was average precision (AP) as presented by
Everingham et al. [39]. For a detection to count as true positive
we required a bird’s eye view overlap threshold of 50%.
Furthermore we averaged the AP over all present object classes
for the overall evaluation on the KITTI raw dataset resulting
in the mean average precision (mAP). We parameterized our
weather simulation according to the parameters presented in
Section VI-A.

The second evaluation metric we used is the comprehensive
safety metric (CSM) presented by Volk et al. [40]. This
metric allows a safety assessment of perception systems and
is capable of evaluating object detection as well as object
tracking. It outputs a single, easy-to-compare number as a
safety assessment. Since we want to directly evaluate the
influence of adverse weather on object detection methods, the
processing pipeline has to be as small as possible. With this in
mind, no object tracking was employed and the safety metric
was parameterized to only take object detection performance
into account.

At first we evaluated the influence of fog, rain, and snow
on the detection of cars, cyclists, and pedestrians as a whole
on the KITTI raw dataset. We also evaluated the two differ-
ent parameter optimizations for fog, three different raindrop
distributions and two different snow densities. The results
are presented in the first two rows in Fig. 3. For mAP as
well as for CSM, fog represents the most severe weather
condition. The dashed lines represent the baseline detection
without simulating any weather conditions.

Rain and snow have shown to affect mAP less compared
to fog. Compared to the baseline, for rain the mAP dropped
by 32.45 p.p. with the Deirmendjian raindrop distribution and
by 32.39 p.p. not only with the Feingold-Levin but also with
the the Marshall-Palmer distribution. This shows that using
different rain distributions only yields in small variations. For
snow the detection drop varied from 25.68 p.p. to 28.11 p.p.
for light and dense snow respectively. The mAP for fog
dropped by 37.42 p.p. for distance optimization and 40.25 p.p.
for chamfer optimization. Even though the resulting detection
drop between the chamfer and distance optimization is almost
the same, the mAP curve is quite different. The chamfer
optimization resulted in bad mAP rates even at higher visibility
compared to the distance optimization.

When it comes to safety evaluation, it can be seen that the
perception safety is not as affected by different weather con-
ditions as the mAP. The worst CSM drop of the investigated
weather simulations was 7.27 p.p. for fog, 3.34 p.p. for rain,
and 3.99 p.p. for snow. However, this finding is also due to
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Fig. 3: Impact of fog, rain, and snow on the perception performance of PointPillars [36]. The first two rows evaluate the mAP
and CSM metric on the KITTI raw dataset [10]. The dashed line represents the baseline detection. The last row shows the
impact on the AP of different object classes on the KITTI 3D object detection dataset [37].

the structure of the KITTI raw dataset. The relatively low ego
speed results in short braking times. These short braking times
combined with few cutting paths of the ego vehicle and other
objects result in almost no safety critical objects. Hence, this
dataset is not sufficient to evaluate safety and only allows for
an estimation. For the evaluation of the different object classes,
we used the KITTI 3D object detection dataset. Furthermore
we had to choose a weather parameterization. For fog we used
the distance optimization as it does not drop as drastically as
the optimization with chamfer distance. For rain we used the
Feingold-Levin distribution and for snow we used the dense
snow variant. The results of this experiment are presented in
the last row of Fig. 3. An observation, not to be overlooked,
is that the different object classes get affected differently
by the weather variants. Vulnerable road users get detected
much worse compared to cars, even without the influence of
weather. Analogue to fog representing the most severe weather
condition, the detection of cyclists and pedestrians even drops
to 0% for fog. Interestingly, for pedestrians slight increases of
the AP could be observed, even with increasing rain intensity.
Due to the increased noise induced by rain, less false positive
objects were detected by the investigated neural network, while

maintaining the true positive detections, resulting in a higher
AP value. The AP curve for cars follows the mAP rates in
the previous evaluation, as seen in Fig. 3, although a different
KITTI dataset was used. This is mostly due to cars being the
dominant class among the whole KITTI dataset.

VII. CONCLUSION & OUTLOOK

In this work we presented two approaches to realistically
simulate weather conditions for LiDAR sensors. The presented
approach for rain and snow is based on physical fundamentals
realized with ray tracing, while the approach for fog simulation
is based on empirical findings. All approaches have been
parameterized and optimized according to the DENSE dataset
to best fit the effects of real rain, snow, and fog. Firstly we
evaluated the influence of adverse weather conditions on the
state of the art neural network PointPillars for object detection
on LiDAR data. Secondly we showed that rain, snow, and
fog drastically reduce the perception capabilities of neural
networks which were not trained on a diverse dataset. Lastly
we could show that not all object classes are equally affected
by adverse weather. Especially vulnerable road users are more
prone to not be correctly detected under these environmental
conditions.



To summarize, in addition to validating the robustness of
existing detection algorithms, the proposed approach may also
be used for creating diverse datasets, which include adverse
weather conditions, for the training of neural networks.

In conclusion, by providing the ability to generate the de-
sired environmental conditions, our approach helps to develop
more robust object detection algorithms.
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