
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

UltraTrail: A Configurable Ultra-Low Power
TC-ResNet AI Accelerator for

Efficient Keyword Spotting
Paul Palomero Bernardo, Christoph Gerum, Adrian Frischknecht, Konstantin Lübeck,

and Oliver Bringmann, Member, IEEE

Abstract—Recent advances in machine learning show the
superior behavior of temporal convolutional networks (TCNs)
and especially their combination with residual networks (TC-
ResNet) for intelligent sensor signal processing in comparison to
classical CNNs and LSTMs. In this paper, we propose UltraTrail,
a configurable, ultra-low power TC-ResNet AI accelerator for
sensor signal processing and its application to efficient keyword
spotting. Following a strict hardware/model co-design approach,
we have derived an optimized low-power hardware architecture
for generalized TC-ResNet topologies consisting of a configurable
array of processing elements and a distributed memory with dy-
namic content re-allocation. We additionally extend the network
with conditional computing to reduce the number of operations
during inference and to provide the possibility for power-gating.
The final accelerator implementation in Globalfoundries’ 22FDX
technology achieves a power consumption of 8.2 µW for the task
of always-on keyword spotting meeting the real-time requirement
of 100 ms per inference with an accuracy of 93 % on the Google
Speech Command Dataset.

Index Terms—Accelerator architectures, deep neural networks,
edge computing, low-power electronics, neural network hard-
ware.

I. INTRODUCTION

THE important breakthroughs in using deep neural net-
works for a large variety of machine learning applications

have been strongly influenced by the availability of high-
performance computing platforms. In contrast to its biological
origin, however, the high performance of artificial neural
networks critically has much higher energy demands. Today’s
solution of applying modern deep learning approaches in
mobile embedded systems very often relies on the necessity
to access cloud computing platforms to process deep learning
inference with the associated negative consequences for pri-
vacy and security. Therefore, advances are strongly needed
both in the development of resource-efficient deep neural
networks (DNNs) and their energy-efficient implementation
in edge computing devices. In the last two years, temporal

Manuscript received April 18, 2020; revised June 12, 2020; accepted July 6,
2020. This article was presented in the International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems 2020 and appears as part
of the ESWEEK-TCAD special issue. This work has been partly funded by
the EU and the German Federal Ministry of Education and Research (BMBF)
in the projects OCEAN12 (reference number: 16ESE0270) and Scale4Edge
(reference number: 16ME0129).

The authors are with the Department of Computer Science, University
of Tübingen, 72074 Tübingen, Germany (email: {paul.palomero-
bernardo, christoph.gerum, adrian.frischknecht, konstantin.luebeck,
oliver.bringmann}@uni-tuebingen.de).

convolutional networks (TCNs) have shown their superior
behavior for numerous sequence modeling and analysis tasks
(cf. [1]) and in particular for analysis and classification of
sensor data streams, just to mention an important application
domain of embedded devices. TCNs have scalable temporal
convolutional layers, cope with relatively flat hierarchies, and
yet cover a large receptive field in a flexible and adaptive
manner. Thus, they can significantly minimize the entire signal
processing chain. Compared to LSTMs and GRUs, TCNs
appears not only more accurate, but also simpler and clearer,
and are therefore a very attractive candidate for efficient
implementation of deep learning inference in edge computing
devices.

The application of the TCN concept to the quite successful
deep residual learning approach (ResNet [2]) has been pro-
posed by Choi et al. in [3] and is called TC-ResNet. TC-
ResNet uses convolutions that are only applied along the
temporal dimension of the input data and allows detecting
high-frequency features with less complex networks just by
increasing the receptive field of the temporal convolutions.

The resource and energy-efficient implementation of deep
neural networks, like TCNs, on mobile and embedded devices
are also very sensitive to the underlying hardware architecture.
There are already a great number of domain-specific hardware
accelerators for efficient implementation of deep learning
inference. Even though they usually claim to be domain-
specific, the basic idea is always to provide a generic archi-
tecture to implement a broad range of deep neural networks.
If we restrict ourselves to a well-suited subclass of DNNs,
specifically TCNs, the accelerator design can be optimized
much more effectively. Therefore, a configurable accelerator
architecture is needed which allows for implementing a wide
variety of temporal neural networks. However, a large number
of parameters and operations combined with the frequently
present real-time requirements pose significant challenges to
the underlying accelerator architecture, especially under strict
energy and area limitations found in near-sensor signal pro-
cessing. A configurable hardware accelerator needs to be easily
customized for a specific application and is crucial for tackling
the task of real-time DNN inference.

In this paper, we propose UltraTrail, a configurable, ultra-
low power TC-ResNet AI accelerator for sensor signal
processing. UltraTrail combines highly parallel computing
paradigms and a dataflow tailored to the TC-ResNet archi-
tecture with a distributed memory setup to exploit the data

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCAD.2020.3012320

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2

dependencies within the temporal convolution and support
the branched nature of the residual network. We present its
application to efficient keyword spotting (KWS) using an
automated training and model compression flow for mapping
the model onto the hardware accelerator. Our contributions can
be summarized as follows:
• Hardware-aware TC-ResNet implementation for efficient

inference including weight/feature quantization and con-
ditional computing (Section III).

• Configurable hardware architecture for ultra-low power
TC-ResNet inference together with a cycle-accurate tim-
ing model (Section IV).

• Application of always-on KWS with a power consump-
tion of 8.2 µW and an accuracy of 93 % on the Google
Speech Command Dataset (GSCD) (Section V).

II. RELATED WORK

One important technique for the efficient implementation of
neural networks is the quantization of weights and activations
to small bit widths [4]. Quantization can lead to enormous
savings in memory requirements, the resource requirements of
the arithmetic units, and the power consumption of the DNN
accelerators [5]. Extreme quantizations like Ternary Weight
Networks [6] or Binary Weight Networks [7] even allow the
replacement of multiplication by addition or subtraction. If
both activations and weights are quantized to 1 bit, multipli-
cations can be replaced by element-wise binary operations [8].

Another idea to increase energy efficiency is the condi-
tional computing of parts of a neural network. One of these
techniques is early exiting of networks at exit branches [9]
[10]. Here, a neural network gets extended by early exit
branches near the front of the network. These exit branches are
evaluated before the main branch of the network and if their
prediction is correct with reasonable confidence, the rest of the
network computations are skipped. A relatively new technique
is the dynamic pruning of input channels at certain positions
within the output of a convolutional layer (channel gating)
[11]. In contrast to static pruning, channel gating allows a
specific decision on the pruning of filter coefficients for each
input. Energy efficiency can also be increased by hierarchical
cascading systems [12]. There are several stages, each of
which contains its own neural network and can perform
increasingly complex classifications instead of using only one
complex neural network. Thus, a successful classification can
already be achieved in the first, non-complex stages. This
prevents later more complex and thus more expensive stages
in terms of energy efficiency from being executed. So they can
be switched off in the meantime. Our implementation of the
tooling to train and deploy efficient neural networks builds on
existing work for neural network compression and conditional
execution to support an energy-efficient implementation on the
hardware accelerator.

As the use-case for the hardware accelerator in this paper
is a keyword spotting task, we also compare our results to
dedicated hardware accelerators for keyword spotting. Pre-
vious efforts in this area have focused on the execution of
established network architectures. Price et al. [13] presented a

CONV 3×1
s = 1, K = 16

Residual Block
K = 24

Residual Block
K = 32

Residual Block
K = 48

Average Pooling

Fully Connected

CONV 9×1
s = 2

BatchNorm

BatchNorm

ReLU

ReLU

RES0

RES1

RES2

RESr

CONV-EXTr,0

CONV-EXT0

CONV-EXT4

CONV-EXTr,1

CONV-EXTr,2

(CONV-EXT )2,2

CONV 9×1
s = 2

CONV 9×1
s = 2

BatchNorm

ReLU

CONV 1×1
s = 2

CONV 9×1
s = 1

Fig. 1. Example residual network for temporal convolution (tc-res8).

scalable circuit architecture for automatic speech recognition
with deep feed-forward networks. Liu et al. [14] introduced
an ultra-low power KWS accelerator using a 2D convolutional
neural network (CNN) and Giraldo et al. [15] employed an
ultra-low power long short-term memory (LSTM) accelerator
for the task of KWS in their speech-triggered wake-up SoC
Vocell. However, with the continuous advances in machine
learning new network architectures based on temporal con-
volution (i.e., 1D convolution along the temporal dimension)
have shown superior behavior for intelligent sensor signal
processing. Recently, Choi et al. [3] introduced the TC-
ResNet, a combination of temporal convolution and residual
networks for real-time KWS, which considerably reduces the
number of operations compared to conventional 2D convolu-
tional and recurrent network architectures while maintaining
comparable accuracy. To the best of our knowledge, there is no
efficient hardware implementation of TC-ResNet based neural
networks. In the next section, we describe our approach for
target-specific optimization of the neural network model. Our
configurable hardware accelerator is presented in section IV
and the achieved results for KWS in section V.

III. MODEL OPTIMIZATION AND QUANTIZATION

The TC-ResNets considered in this paper implement the
basic structure described in [3], where TC stands for temporal
convolutions and ResNet [2] adopts the ResNet approach that
is most well-known for image recognition and classification
tasks. The most notable difference between normal ResNets
and TC-ResNets is the use of 1D-convolutions. These convolu-
tions are only applied along one dimension of input data. In the
case of time series data, this is the temporal dimension. One
advantage of temporal convolutional networks is their use of
larger convolution filters with the same number of parameters
and arithmetic operations as compared to traditional convolu-
tional networks using 2D-Convolutions, e.g. 9x1 vs 3x3. This

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCAD.2020.3012320

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3

Input Batch(x) Output Batch(x)

quantize
weights

quantize
bias

quantize
actCONV

Fig. 2. Quantization-aware training.

allows them to detect high-frequency features with shallower
networks and makes them one of the best emerging network
technologies for the analysis of 1D time series, e.g. taken from
sensor data streams.

A TC-ResNet as depicted on the left of Fig. 1 consists
of a feature extraction part composed of a sequence of 1D-
convolution and residual blocks and a classifier part composed
of a global average pooling and a small fully connected layer.

A residual block as shown on the right of Fig. 1 consists
of a main path with the following layers: 9x1-convolutional
layer → batch normalization → ReLU → 9x1-convolutional
layer→ batch normalization. The outputs of the main path are
then added to the residual path. The residual path forwards the
input data of the residual block. The addition is followed by
a final ReLU activation function. The residual block usually
contains a simple 1x1-convolutional layer followed by batch
normalization and ReLU for resampling the inputs of the block
to the output size.

Our model selection and preparation framework tries to
select a TC-ResNet optimized for low-power inference on the
target hardware architecture. It consists of the following steps.

1) Neural network architecture exploration: This step mod-
ifies the parameters of the basic TC-ResNet architecture
to search for trade-off between model complexity and
accuracy. Architecture exploration is carried out with
unquantized networks in floating point arithmetic to
speed up the exploration.

2) Quantization-aware training: This step takes the selected
model and retrains it with simulated quantization of the
networks parameters and activations.

3) Conditional execution: Finally, the network is trans-
formed by inserting early exit branches to conditionally
avoid the computation of parts of the network on most
of the samples.

A. Quantization-Aware Training

Many approaches to neural network quantization [4] take
a neural network trained on floating-point data and simply
quantize the weights to integers. This approach leads to
sufficient accuracy for reasonably deep networks as these
networks provide enough redundancy to handle the loss of
arithmetic accuracy. As TC-ResNets are designed as shallow
networks with a relatively low amount of redundancy, we need
to adopt a training approach that takes the effects of neural
network quantization into account.

For this, we use the approach shown in Fig. 2. Weights,
biases, and activations are quantized using a simulated quanti-
zation function. In this paper, we use a simple symmetric fixed-
point quantization. A floating-point value vfloat is transferred

Input Batch(x)

quantize
weights

update
statistics

quantize
bias

quantize
act

CONV

CONV

Fig. 3. Quantization-aware batch norm folding.

to its simulated n-bit quantized representation vq using the
following equation:

vq =
max(min(round(vfloat) · 2n−1), 2n−1 − 1),−2n−1)

2n−1
.

(1)
At inference time on the hardware accelerator, we use

correctly quantized fixed-point values. Quantization effects
are only simulated during the forward phase of the training.
During backpropagation we adopt the straight through esti-
mation approach [16], [17], replacing quantization functions
with identity functions and updating the floating-point values
of weights directly. This allows small updates of weights to
accumulate over multiple mini-batches even if a single update
would be too small to affect the quantized weights.

For further simplification of the hardware implementation,
all division operations in the neural network are replaced
by an approximation, rounding each divisor to the nearest
power of 2. This approach allows a simple implementation
of the division operations using only a single right-shift
operation. This is especially used in the average pooling layers
and in the calculation of early exit conditions as shown in
subsection IV-B4.

During quantization-aware training, special care must be
taken for batch normalization. Batch normalization is an
important operation at training time. It normalizes the outputs
of the preceding layers and allows a faster convergence of the
training process and a higher classification accuracy of the
trained network.

Batch normalization is defined by the following operation:

yi = γ
xi − µB√
σB + ε

+ β, (2)

with µB and σB denoting the per mini-batch mean and
standard deviation of the input activations. γ and β are
learned parameters, and epsilon is a small constant to increase
numerical stability for small σB . During inference batch
normalization is calculated as:

yi = γ
xi − µ√
σ + ε

+ β, (3)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCAD.2020.3012320

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 4

with µ and σ denoting the long-term moving averages
of inputs over the training set. As all parameters of this
equation except the input xi are constant at inference time,
these parameters can be merged with the preceding input
quantization layers. This optimization is often referred to as
batch norm folding [4].

For floating-point models, this transformation can be imple-
mented as a simple post-training transformation. This trans-
formation uses the following transformation to calculate the
new weights and biases of the preceding convolutional or fully
connected network layer.

Winf = γ
W√
σ + ε

and βinf = β − γ W√
σ + ε

. (4)

The batch normalization layer is then removed from the
network. But for low-bitwidth quantized models, the effects
of this optimization need to be considered during network
training. Otherwise, the rounding errors that are produced by
batch norm folding. would severely degrade the accuracy of
the neural network. This is implemented according to Fig. 3.

We first calculate a convolution with the floating-point
weights. The result of this convolution is then used to update
the per batch and global statistics. The floating-point weights
are used to calculate the convolution weights after batch
norm folding and quantization. The actual convolution uses
the quantized weights with simulated batch normalization.
After the convolution, we first correct the result for the usage
of global statistics instead of per batch statistics and finally
add the folded biases. The outputs of the folded layer are
then quantized with the output quantization function of the
convolutional layer.

During inference, only the convolution with quantized
weights and the addition of the quantized bias are calculated.
The rest of the operations are removed from the network.

B. Conditional Execution

Our implementation of conditional execution for temporal
convolutional models builds on [9], [10].

It works by inserting additional exit branches after the first
one or two residual blocks, as shown in Fig. 4. During training,
the main branch and each exit of the network are always
executed and trained simultaneously. During inference, the exit
branches are evaluated first, and if an exit criterion is met the
execution stops at the exit branch and returns the output of the
current exit as the classification result of the whole network.
If the exit is not taken, the rest of the network is evaluated
until either one of the exits is taken or the normal exit of the
network is reached.

Our exit criterion is based on the cross-entropy loss-function
used to train the networks. This function is defined as follows:

loss(x, class) = − log

(
exp(x[class])∑

j exp(x[j])

)
, (5)

where x is the vector of outputs of the neural network
and class is the expected class number. During training the
expected class is given in the training data, to calculate an
approximation of the loss function during inference we replace

BatchNorm

ReLU

Average Pooling

Fully Connected

Exit Condition

CONV 1×1
s = 1

CONV-EXT3,0

CONV-EXT3,1

Main Branch

Exit Branch

CONV 3×1
s = 1, K = 16

Residual Block
K = 24

Residual Block
K = 32

Residual Block
K = 48

Average Pooling

Exit Branch

Fully Connected

RES0

Exit Branch

RES1

RES2

CONV-EXT0

CONV-EXT4

(CONV-EXT )2,2

Fig. 4. Implementation of early exit.

class with the index of the maximum output of the exit. This
essentially calculates the exit condition assuming that each
output always makes the correct decision, and using the loss
as a confidence value for the correctness of this decision. This
leads to the following exit condition:

− log

(
exp(x[class])∑

j exp(x[j])

)
< T. (6)

Using a user-defined threshold T . This equation can be
transformed to∑

j

exp(x[j]− x[class]) < exp(T ). (7)

During quantization aware training, we implement the exit
condition using the approximation for exp described in section
IV-B4.

IV. HARDWARE ARCHITECTURE

The hardware architecture for UltraTrail aims to provide
efficient mapping of the TC-ResNet without giving up too
much of its flexibility. To this end, we introduce a unified layer
representation called CONV-EXT. A CONV-EXT layer is a
CONV layer which can be extended with batch normalization,
ReLU activation, average pooling, and conditional computing
in this order. Coupling these operations to a CONV layer and
enforcing a predefined execution order makes it possible to
streamline the dataflow within the accelerator while main-
taining most flexibility since this is generally the preferred
processing order within the TC-ResNet.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCAD.2020.3012320

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 5

WMEM
1024×512b

FMEM2
160×64b

FMEM1
280×64b

FMEM0
512×64b

BMEM
64×64b

MACArray
8×8

LMEM
112×160b

OPU

C
on
tro
lU
ni
t

In
te
rc
on
ne
ct

Fig. 5. Overview of the UltraTrail system architecture.

Based on this concept, UltraTrail can execute networks
with up to 16 CONV-EXT layers. The complete system
architecture is shown in Fig. 5. It employs a MAC array for
the convolutional computation and an output processing unit
(OPU) to perform the remaining post-processing steps. They
are surrounded by a distributed memory setup consisting of a
weight memory (WMEM), bias memory (BMEM), and three
feature memories (FMEM0-2) to meet the high bandwidth
requirements and support the branched network structure intro-
duced by the residual connection and conditional computing.
To support changes in the network structure, configurability is
given through means of a programmable control unit.

A. MAC Array

The MAC array forms the primary processing unit of
the accelerator and is used to execute the computationally
intensive yet highly parallelizable CONV layers. A detailed
schematic view is presented in Fig. 6. It consists of 64 MAC
units arranged as an 8 × 8 grid as well as a local memory
(LMEM) to store partial sums. The dataflow is defined by
spatially unrolling input and output channels along the two
array dimensions. Both size and dataflow are fit for our
optimized TC-ResNet. Since the number eight is the greatest
common divisor for all input and output channels (except for
the final output), almost optimal utilization of the available
processing units can be achieved by using this MAC array
size.

A CONV/FC layer is processed iteratively using the layers’
spatially unrolled convolutional loop nest. A general version
of a spatially unrolled convolutional loop nest with output
channels K, input channels C, filter width F , output channel
width X , a stride of one, no zero-padding and input, weight
and output tensors i,w and o, is described in Fig. 7. Note,
that fully-connected (FC) layers can be described similarly by
setting F = X = 1. In each cycle, 64 weights (w00, . . . , w77)
from the WMEM and 8 input features (i0, . . . , i7) from the
corresponding FMEM are provided to the array. The memories
are directly connected to the array via their output ports and
provide the quantized data in vectorized form. During the
design phase, the bit widths for weights and input features
can be adjusted as required. Our final accelerator uses 6-bit
weights and 8-bit input features, so the port widths of the
memories are fixed to 64 × 6 bit = 384 bit (WMEM) and
8 × 8 bit = 64 bit (FMEM). Which data is provided at what

ii

j
tp

MAC

wij

ii

j
tp wij

jo

partial sum weight

input channel value output channel value

W
M
EM

FM
EM

0-
2

FMEM0-2

OPU

7
0p
0 0

0
0p
0 0

1
0p
0 0

2
0p
0 0

3
0p
0 0

4
0p
0 0

5
0p
0 0

6
0p
0 0

w00 w0j

w1j

w2j

w3j

w4j

w5j

w6j

w7j

0i

0
tp 1

tp 2
tp0

t+1p 1
t+1p

3
tp2

t+1p
4
tp3

t+1p
5
tp4

t+1p
6
tp5

t+1p
7
tp6

t+1p 7
t+1p

1i

0o 1o 2o 3o 4o 5o 6o 7o

2i

3i

4i

5i

6i

7i

w01 w02 w03 w04 w05 w06 w07

w10 w11 w12 w13 w14 w15 w16 w17

w20 w21 w22 w23 w24 w25 w26 w27

w30 w31 w32 w33 w34 w35 w36 w37

w40 w41 w42 w43 w44 w45 w46 w47

w50 w51 w52 w53 w54 w55 w56 w57

w60 w61 w62 w63 w64 w65 w66 w67

w70 w71 w72 w73 w74 w75 w76 w77

LMEM0 LMEM1 LMEM2 LMEM3 LMEM4 LMEM5 LMEM6 LMEM7

t

Fig. 6. Schematic view of the MAC array.

point in time results from the loop body of the convolutional
loop nest. The eight input features are taken from adjacent
input channels and are broadcast along the output channel
dimension to the individual MAC units which each receives
the corresponding weight from one of eight filters. Thus, the
array always processes eight input channels for eight output
channels in parallel. The MAC units of each output channel
form a combinational path along which the partial sum of
an output feature is accumulated. Each MAC unit forms the
product of weight and input feature and adds it to the incoming
partial sum. To avoid overflow or loss of accuracy, the bit
width of the partial sums is 20 bit. The first MAC unit on the
path generally receives the partial sum of a previous iteration
from the LMEM. Only in the first iteration of an output feature
(c0 = f = 0) it is externally set to either 0 or an initial value
(p00, . . . , p

0
7). The latter is used to add two feature maps by

initializing the partial sum to the corresponding feature value
from the already computed feature map. All other units receive
the result of the previous unit as input. The complete partial
sum for the current time step t (pt0, . . . , p

t
7) is finally stored in

the LMEM at the next positive clock edge. Simultaneously, the
next partial sums (pt+1

0 , . . . , pt+1
7 ) are already loaded. Access

to the LMEM is, similar to the other memories, vectorized
using 8 × 20 bit = 160 bit ports. To enable parallel read
and write access, the LMEM is implemented as a dual-port
memory. When the last iteration of the current output features

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCAD.2020.3012320

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 6

1: for k0 = 0 : K/8 do
2: for c0 = 0 : C/8 do
3: for f = 0 : F do
4: for x = 0 : X do
5: parfor k1 = 0 : 8 do
6: parfor c1 = 0 : 8 do
7: o[8 · k0 + k1][x] +=
8: i[8 · c0 + c1][x+ f]·
9: w[8 · k0 + k1][8 · c0 + c1][f]

Fig. 7. Spatially unrolled convolutional loop nest.

is reached (c0 = C/8, f = F ), i.e., they are completely
accumulated, they are no longer stored in the LMEM but are
forwarded to the OPU in the same clock cycle (o0, . . . , o7).

This dataflow has two major advantages: First, due to the
chosen loop-blocking scheme weights remain stationary to a
MAC unit. This means that the same weights are used in
consecutive cycles until they have been used in all required
computations. As a result, the number of WMEM accesses is
minimized since each weight is fetched only once throughout
an entire inference. Second, as long as the number of input
and output channels of a CONV layer is divisible by eight,
an optimal operation mapping in terms of MAC utilization
is possible which enables a continuous inference computa-
tion without stalls at a constant and maximal throughput of
64 MACS/cycle.

B. Output Processing Unit (OPU)

The OPU combines bias, ReLU activation, average pooling,
and conditional computing and thus all remaining operations
of the TC-ResNet in a combinational circuit with four discrete
stages. It receives the output features generated by the MAC
array and passes them through the entire circuit within the
same clock cycle. Stages that are not required are skipped
according to the current layer configuration. The results are
written back to a feature memory. This immediate processing
of the output features avoids redundant memory accesses,
improves MAC array utilization, and streamlines the control
flow inside the accelerator as it boils down to sequential
execution of CONV layers. The individual stages are briefly
described below.

1) Bias: The first stage adds a bias to the output features.
It is directly connected to the BMEM from which it receives
the biases in a vectorized form via an 8× 8 bit = 64 bit port.
As for the weights and input features, the bit width for the
biases can be adapted during the design phase. Although the
TC-ResNet does generally not use biases within the CONV
layers, this stage is necessary to support the bias introduced by
folding the batch normalization as described in section III-A.

2) ReLU: The second stage applies a ReLU activation to
the output features.

3) Average Pooling: The third stage performs an online
average pooling for each output channel. For each channel, the
incoming features are divided by the number of features per
channel and are added onto a locally stored running mean. The
number of features is approximated by the next larger power

TABLE I
FMEM ARRANGEMENT FOR OUR TC-RESNET KWS MODEL

FMEM0 FMEM1 FMEM2

CONV-EXT0 IF OF –
CONV-EXT0,0 OF IF –
CONV-EXT0,1 – IF OF
CONV-EXT0,2 IF OF PS
CONV-EXT1,0 OF IF –
CONV-EXT1,1 – IF OF
CONV-EXT1,2 IF OF PS
CONV-EXT3,0 – IF OF
CONV-EXT3,1 – – IF
CONV-EXT2,0 OF IF –
CONV-EXT2,1 – IF OF
CONV-EXT2,2 IF OF PS
CONV-EXT4 – IF –

of two to implement the division by a right shift. Once a set
of output channels has been finished, the result is forwarded
and the local registers are reset.

4) Conditional Computing: The fourth stage computes the
exit condition presented in (7) using a third-degree Taylor
approximation around 0. Divide operations are approximated
by right shifts using the next larger power of two. If the con-
dition is met, the accelerator terminates inference and returns
the current result. Unlike the previous stages, the calculation
cannot be performed online since the Taylor approximation
requires the maximum over all output features. Incoming
features are, therefore, stored locally until the entire output
is available.

C. Distributed Memory Setup

A distributed memory setup with dynamic content realloca-
tion is used to account for the high-bandwidth requirements
and parallel read/write operations of the MAC array and
the OPU. It consists of a weight memory (WMEM), a bias
memory (BMEM), three feature memories (FMEM0-2), and
the local memory (LMEM) inside the MAC array.

1) WMEM and BMEM: These two memories contain the
entire network model. Once initialized, they remain unchanged
during further operation. The WMEM has a size of 64 kB and
is by far the largest memory in the accelerator.

2) FMEM: The three feature map memories store the input
and output feature maps and are switched dynamically to
exploit the fact that the output feature map of the previous
layer is the input feature map of the next layer. For instance,
the initial feature map is loaded into FMEM0 and the output
feature map of the first layer is stored into FMEM1. For the
next layer, FMEM1 will provide the input feature map and
the generated output feature map is stored back into FMEM0.
However, this straight forward switching is disrupted by the
ResNet structure as well as the exit branch where an additional
feature map for the parallel path needs to be managed. For this
purpose, FMEM2 is introduced which stores this extra feature
map. In the case of a residual connection, it also provides
the features through partial sum initialization to seamlessly
integrate the addition of both feature maps into the dataflow.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCAD.2020.3012320

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 7

TABLE I summarizes the FMEM arrangement for our entire
KWS model. Each memory is either providing input features
(IF), partial sums (PS), receives output features (OF), or is idle
(–). Note, that all feature memories are generally interchange-
able and can perform every role. The FMEM arrangement for
a layer is defined in the layer configuration.

3) LMEM: The LMEM is used to decouple the high
precision (20 bit) domain within the MAC array from the other
feature memories (8 bit). Even though it would generally be
possible to remove the LMEM and directly accumulate the
partial sums inside an FMEM, this would introduce a huge
overhead as each FMEM would need to support the 20-bit
feature representation.

D. Control Unit

UltraTrail employs a programmable control unit to execute
networks with up to 16 CONV layers including their post-
processing steps. A 672-bit configuration register allows the
network structure to be described on a layer-by-layer basis.
For each layer, the loop boundaries of the convolutional loop
nest, stride, and padding, as well as the post-processing steps
to be performed and the arrangement of the feature memories
are defined. All control signals can then be derived from these
values and the loop variables of the convolutional loop nest
which are updated by every clock cycle.

E. Timing

For a design-space exploration of neural networks to be
used in real-time systems it is crucial to know how long
the inference of a sample takes to verify given real-time
constraints before the neural network is deployed onto the
target hardware. Thus, we propose an analytical timing model
for UltraTrail to predict the cycle-accurate run time for one
inference.

Each CONV-EXT layer to be mapped onto UltraTrail can
be defined as a 6-tuple1 l = (C,Cw,K, F, s, p), where:
• C ∈ {1, 2, 3, . . . , 56} is the number of input channels;
• Cw ∈ {1, 2, 3, . . . , 127} is the width of an input channel;
• K ∈ {1, 2, 3, . . . , 56} is the number of output channels;
• F ∈ {1, 2, 3, . . . , 15} is the filter width;
• s ∈ {2n : n ∈ {0, 1, 2, . . . , 7}} is the stride;
• p ∈ {0, 1} is the padding (p = 1 means padding enabled).

A neural network can be expressed as a set L, which holds
all network layers l.

The following equations describe how the number of clock
cycles to process a whole neural network on the UltraTrail
architecture is calculated. The approach is illustrated by re-
peated application of a generalized filter onto a single input
channel as depicted in Fig. 8. Depending on the padding p, a
filter is applied onto an input channel within the range of

Ĉw = Cw + p · 2 ·
⌊
F

2

⌋
. (8)

1OPU computations are excluded from this tuple since they do not influence
the timing due to their combinational implementation.

zero padded

input channel filter weights

Fig. 8. Depiction of generalized filter applications onto a single input channel.

Within the range of Ĉw, the whole filter is applied

aw =

⌊
Ĉw − F

s
+ 1

⌋
(9)

times. When padding is enabled (p = 1), zero padding is
applied such that certain filter elements at the beginning and
the end of an input channel are not used. The number of zero
padded values at the beginning Cw,b is defined by

Cw,b =

⌊
F

2

⌋
. (10)

For the zero padded values, less than F MAC operations are
executed by ap,b filter applications, which is calculated by

ap,b = p ·
⌊
Cw,b − 1

s
+ 1

⌋
. (11)

Based on the number of filter applications, the number of MAC
operations at the beginning of an input channel is defined by:

#MACnot,b =

ap,b−1∑
i=0

⌊
F

2

⌋
− s · i. (12)

The width Fw in which a filter is actually applied depend on
the filter width F and the stride s is calculated by

Fw = aw · s+ F − s ≤ Ĉw. (13)

Since Fw ≤ Ĉw holds, the width in which the filter is applied
at the end of an input channel can be computed by

Cw,e = Fw − Cw − Cw,b. (14)

The number of filter applications at the end of an input channel
ap,e which include zero padding is given by

ap,e = p ·
⌊
Cw,e − 1

s
+ 1

⌋
. (15)

Hence, the number of MAC operations being replaced by zeros
which do not require a MAC unit can be calculated by

#MACnot,e =

ap,e−1∑
i=0

⌊
F

2

⌋
− s · i− (Cw,b − Cw,e). (16)

For each layer l ∈ L, it takes one clock cycle to load the
first input channel values and filter weights from FMEM0 and
WMEM into the MAC array. All following loads are hidden

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCAD.2020.3012320

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 8

since loading the next input channel values and weights takes
place in the same clock cycle as the processing of the current
input channel values and filter weights. For the calculation
of each output channel all input channels are needed which
leads to C ·K iterations. The MAC array processes eight input
data for eight output channels on 64 MAC units in parallel
such that the number of iterations is reduced to

⌈
C
8

⌉
·
⌈
K
8

⌉
.

During each iteration, the filter is applied aw times onto one
input channel and in each application F MAC operations are
executed. When applying a filter onto one input channel, the
zero-padded values at the beginning and the end of the input
channel do not occupy a MAC unit and can, therefore, be
subtracted from the number of MAC operations. This results
in

t(l) = 1+

⌈
C

8

⌉
·
⌈
K

8

⌉
·(aw ·F−#MACnot,b−#MACnot,e)

(17)
clock cycles to process one CONV-EXT layer l ∈ L. The
total number of clock cycles to process a whole network is
calculated by

T (L) =
∑
l∈L

t(l). (18)

V. RESULTS

To evaluate our hardware accelerator and our neural archi-
tecture optimization framework, we show how to optimize the
TC-ResNet for keyword spotting and its efficient implemen-
tation on our hardware accelerator.

In the remainder of this section, we first describe the
results of the software-based neural network training using our
implementation flow followed by an evaluation of the resulting
network on the hardware accelerator and a comparison to the
state of the art.

A. Network Training and Optimization

This section describes the results of the neural network
training and optimization.

Our neural networks have been implemented in pytorch
version 1.1.0 [18]. The model transformations have been
implemented using Nervana Distiller [19] .

The networks are trained to classify the 10 keywords “yes”,
“no”, “up”, “down”, “left”, “right”, “on”, “off”, “stop”, and
“go” from Google Speech Commands Dataset [20]. The re-
maining keywords are mapped to a common class “unknown”,
and samples containing only background noise are mapped to
a final class “silence”. This leads to 12 classes in total for our
classification problem. The audio files of the dataset have a
length of one second and are first preprocessed by shifting their
position randomly 100 ms forward or backward and padding
the remainder of the files with zeros. This results in a real-
time constraint of 100 ms per inference to detect each keyword.
After this data augmentation, a random amount of background
noise taken from the noise files provided by Google Speech
Commands is added to the sample. The intensity of the added
noise is chosen randomly between 0.0 and 0.1 If not stated
otherwise the added noise is used during training, validation
and test.

tc-
res

4

tc-
res

6

tc-
res

8

tc-
res

10

tc-
res

12

tc-
res

14

tc-
res

16

tc-
res

18

tc-
res

20

85

90

95

100

88.71

93.16
94.39 94.74 94.56 94.89 94.44 94.46 94.25

A
cc

ur
ac

y
(%

)

Fig. 9. Accuracies of different TC-ResNet architectures.

tc-
res

4

tc-
res

6

tc-
res

8

tc-
res

10

tc-
res

12

tc-
res

14

tc-
res

16

tc-
res

18

tc-
res

20
0

1

2

3

4

0.54

0.87

1.24

1.60

2.20

2.76

3.13

3.64

3.97

C
om

pl
ex

ity
(M

M
ac

s)

Fig. 10. Computational complexity of different TC-ResNet architectures.

For feature extraction, forty-dimensional mel-frequency
cepstrum coefficient (MFCC) frames are constructed for each
30 ms window with a shift of 10 ms between each window.
All frames are then concatenated to form the 40 channel input
stream for our models with a length of 101 frames per second.

All networks are trained for 500 epochs using an initial
learning rate of 0.1. The learning rate is reduced by a factor
of 10 every 100 epochs. All other training parameters are left
at their default values.

1) Neural Network Architectures: The results of our base-
line network exploration are shown in Fig. 9 and Fig. 10. The
computational complexity of the different TC-ResNet architec-
tures increases linearly with the number of input layers. The
accuracy of the networks reaches a saturation point around
tc-res8. Therefore, we have chosen tc-res8 as the baseline
architecture for the implementation of the keyword spotting
system.

2) Quantization-Aware Training: After the selection of the
initial network topology, we quantized the network. In this
case, the whole network was retrained using quantization-
aware training with user-selectable bit widths for weights w
and activations a. The accuracy results are shown in Fig. 11.
As the results for a = 8, a = 6 and w = 4 are clearly
inferior to the rest of the results, which are in the same order
of magnitude, we chose a = 8 bit and w = 6 bit as activations
for the hardware accelerator.

3) Conditional Execution: To further reduce the average
computational complexity of our neural networks, we inte-
grated early exit branches after the first and second residual

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCAD.2020.3012320

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 9

a:4
w:4

a:6
w:6

a:8
w:4

a:8
w:6

a:8
w:8

a:8
w:16

a:1
6 w:16

70

80

90

100

45.60

86.89
88.87

92.43 92.68 93.29 93.41
A

cc
ur

ac
y

(%
)

Fig. 11. Effect of varying bit widths for weights (w) and activations (a) on
accuracy.

0.3 0.4 0.5 0.6 0.7 0.8 0.9

85

90

95

100

92.49 92.49 92.67 92.43 92.27 92.45

87.44

Exit Threshold (T)

A
cc

ur
ac

y
(%

)

Fig. 12. Accuracy of early exit network tc-res8 with early exits after the first
and second residual block under varying thresholds.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

Exit Threshold (T)

E
xi

ts
ta

ke
n

Normal Exit
Exit 2
Exit 1

Fig. 13. Distribution of exits taken (exit 1, exit 2, normal exit) depending on
a given exit threshold using quantized TC-ResNet8.

block of the tc-res8 network and evaluated the resulting
networks. Both exit branches use the same thresholds. All
networks in this section use tc-res8 topology and quantization
of 8 bit for activations and 6 bit for weights. As can be seen
in Fig. 12 the accuracy varies between 92.67% and 87.44%
for a threshold of 0.5 and 0, respectively. The computational
complexity, as shown in Fig. 13, varies drastically depending
on the threshold value. While a threshold of 0.3 takes the first
exit in 7% and the second exit in 18% of the samples only,
the second exit is taken for more than 69% at a threshold
of 0.8. The first exit on the other hand is still taken only
7% of the time. Therefore, we selected the final network to
use a threshold of 0.8. As the first exit is only taken in very

100 101 102 103

60

80

100

Test SNR (dB)

A
cc

ur
ac

y
(%

)

tc-res8 (fp32)
tc-res8 (quantized)
tc-res8 (quantized + early exit)
lstm (fp32) [15]

Fig. 14. Behavior in noisy environments compared to the network imple-
mented on a state of the art accelerator [15].

few cases, the final network for the hardware accelerator only
contains the second exit.

4) Behavior in Noisy Environments: In Fig. 14 we eval-
uated our tc-res8 based networks under varying amounts of
background noise. Taken from the noise files provided by the
Google Speech Commands dataset. The tc-res8 network with
early exit, using an exit threshold of 0.8 and quantized to
6-bit weights and 8-bit activations, reaches an accuracy of
93.09 % on an almost clean test set (SNR: 1000 dB), while
still providing reasonably good accuracy up to an SNR of
20 dB (90.49 %).

To allow a better comparison with the state of the art we also
included a 32 bit floating-point variant of the neural network
used in [15]. As our implementation of this network uses
floating-point instead of fixed-point values, this implementa-
tion reaches a slightly higher accuracy of 91.57 % compared
to the 90.87 % reported in [15]. This network still performs
worse than our tc-res8 variants over the whole range of added
noise and especially when using very high noise levels the
tc-res8 variants show an improved noise resistance.

B. Hardware Implementation

We implemented UltraTrail using the 22FDX platform by
Globalfoundries. A die layout measuring 0.45 mm×0.45 mm is
shown in Fig. 15. To minimize the static power consumption,
low-leakage standard cells and memories are used, which are,
by design, fixed to an operating voltage of 0.8 V. The chip
supports clock frequencies of up to 30 MHz. For this imple-
mentation, a clock frequency of 250 kHz is chosen such that
the real-time requirement of 100 ms per inference as described
in section V-A is just met. During operation, clock gating
is applied to idle memories to reduce their dynamic power
consumption. In between inferences, they are additionally
power gated.

The average power consumption of the layout during oper-
ation is evaluated through a time-based analysis of inference
simulation traces at a 25 ◦C TT corner. Each trace consists of
an initial setup phase followed by 20 consecutive inference
computations. The results of two traces, one with and one

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCAD.2020.3012320

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 10

TABLE II
RESULTS COMPARISON

ISSCC’2017 [13] IEEE Access [14] ISSCC’2020 [15] ESSCIRC’2018 [21] This work
Technology 65 nm 22 nm 65 nm 65 nm 22 nm

Area 13.17 mm2 0.75 mm2 2.56 mm2 1.03 mm2 0.20 mm2

Frequency 3 MHz 250 kHz 250 kHz 250 kHz 250 kHz
Latency - 20 ms 16 ms 16 ms 100 ms
Voltage 0.6 V 0.55 V 0.6 V 0.6 V 0.8 V

DNN Structure FC CONV+FC LSTM+FC LSTM+FC TC-ResNet
Bit Width (Weights) - 7 4/8 4/8 6
Bit Width (Inputs) - 8 8 8 8

Accuracy1 98.35 % (TIDIGITS)2 90.51 % (GSCD) 90.87 % (GSCD) 90.00 % (TIMIT)2,3 93.09 % (GSCD)
Keywords 11 10 10 4 10

Power 172 µW 52 µW 10.6 µW 5.0 µW 8.2 µW
1 SNR ≥ 1000 dB 2 Note the difference in datasets 3 F1-score

W
M
E
M

W
M
E
M

F
M
E
M

F
M
E
M

F
M
E
M

L
M
E
M

L
M
E
M

B
M
E
M

OPU

MAC

Fig. 15. Die layout of the UltraTrail accelerator in Globalfoundries’ 22FDX.

without conditional computing, are weighted according to
Fig. 13 and are combined to build the final average power
consumption. A complete power breakdown for the chip is
presented in Fig. 16. The total power consumption is 8.15 µW
of which around 75 % are accounted for by the memories.
The LMEM stands out from the other components with 42 %
of the total power consumption. This is due to the fact that
the LMEM is active for the entire duration of an inference as
partial sums are continuously accumulated leading to one read
and write access by the MAC array in each cycle. In contrast,
as a result of the chosen dataflow, the other memories are
only active 62 % (FMEM0) / 39 % (FMEM1) / 3 % (FMEM2)
/ 6 % (BMEM) / 3 % (WMEM) of the time and are clock
gated otherwise. The WMEM in particular benefits from the
minimized number of accesses and, despite its size, remains
at a comparably low power consumption.

The impact of conditional computing on the power con-
sumption is shown in Fig. 17. Compared to an operation
where the entire network is always executed, the total power
consumption was reduced by 22 % with a 28 % reduction
in dynamic power. This reduction is in line with the saved
number of clock cycles by taking the early exit which was
computed using our runtime analysis of IV-E. A full runtime
overview of the network following the structure of Fig. 4 is
listed in TABLE III.

TOTA
L

W
M

EM

BM
EM

FM
EM

LM
EM

ARRAY
OPU

CONTROL
0

2

4

6

8

10
8.15

1.55

0.10

1.10

3.39

0.92
0.37

0.72

Po
w

er
co

ns
um

pt
io

n
(µ

W
)

Static
Dynamic

Fig. 16. Power breakdown by components.

Total Dynamic Static
0

2

4

6

8

10

12
10.48

7.93

2.55

8.15

5.75

2.40

Po
w

er
co

ns
um

pt
io

n
(µ

W
)

Without CC
With CC

Fig. 17. Impact of conditional computing (CC) on power consumption.

A comparison to other state-of-the-art KWS accelerators
is shown in TABLE II. Note, that due to the differences in
datasets, technology, and the components contained in the
chips, a direct comparison is only possible to a limited extent.
Work [13] is mainly designed for automatic speech recognition
and differs most from the other chips with a higher clock rate
and larger area. Besides the DNN accelerators, [13] as well
as [14] and [15] contain further components such as feature
extraction or speaker recognition. With 41.3 µW, the CNN
accelerator from [14] still has a 5× higher power consumption
than this work. The LSTM accelerator used in [15] is based on
[21] which has a slightly lower power consumption than this
work. Here, as shown in section V-A4, the main advantage

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCAD.2020.3012320

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 11

TABLE III
RUNTIME OF OUR TC-RESNET KWS MODEL

C Cw K F s p t(l) [clock cycles]

CONV-EXT0 40 101 16 3 1 0 2971
CONV-EXT0,0 16 99 24 9 2 1 2629
CONV-EXT0,1 16 99 24 1 2 0 301
CONV-EXT0,2 24 50 24 9 1 1 3871
CONV-EXT1,0 24 50 32 9 2 1 2581
CONV-EXT1,1 24 50 32 1 2 0 301
CONV-EXT1,2 32 25 32 9 1 1 3281
CONV-EXT3,0 32 25 12 1 1 0 201
CONV-EXT3,1 12 1 12 1 1 0 5

Exit 2 – – – – – – 16141

CONV-EXT2,0 32 25 48 9 2 1 2521
CONV-EXT2,1 32 25 48 1 2 0 313
CONV-EXT2,2 48 13 48 9 1 1 3493
CONV-EXT4 48 1 12 1 1 0 13

Normal Exit – – – – – – 22481

of the TC-ResNet lies in its higher accuracy and greater
robustness against noise which in our opinion can justify the
additional power consumption, depending on the use-case.
Overall, this work achieves a notably higher accuracy with a
better or comparable power consumption on the GSCD dataset.

VI. CONCLUSION AND FUTURE WORK

This paper presented UltraTrail, a configurable ultra-low
power TC-ResNet AI accelerator and its application to efficient
keyword spotting. Combining a dataflow architecture that
exploits the data dependencies within the temporal convolution
with a distributed memory setup which supports the branched
nature of modern network architectures we were able to em-
phasize the potential of TCNs from a hardware perspective. We
showed that established DNN accelerator design approaches
can be effectively adopted to achieve competitive power results
while leveraging the accuracy advantages over CNN or LSTM
implementations. The final accelerator attains a KWS accuracy
of 93.09 % with a total power of 8.2 µW.

Going forward, we plan to extend the range of applications
beyond the current KWS task. Building upon the existing
configurability we envision an accelerator suitable for a broad
spectrum of sequence modeling and analysis tasks. Based on
the results of this work and seeing the continuous advances in
neural network design in conjunction with the recent successes
of TCNs we believe the field of efficient TCN acceleration to
be a promising area for future research.

REFERENCES

[1] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling,” arXiv
preprint arXiv:1803.01271, 2018.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[3] S. Choi, S. Seo, B. Shin, H. Byun, M. Kersner, B. Kim, D. Kim,
and S. Ha, “Temporal Convolution for Real-time Keyword Spotting
on Mobile Devices,” CoRR, vol. abs/1904.03814, 2019. [Online].
Available: http://arxiv.org/abs/1904.03814

[4] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks
for efficient integer-arithmetic-only inference,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 2704–2713.

[5] L. Cavigelli and L. Benini, “Origami: A 803-gop/s/w convolutional
network accelerator,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 27, no. 11, pp. 2461–2475, 2016.

[6] F. Li, B. Zhang, and B. Liu, “Ternary weight networks,” arXiv preprint
arXiv:1605.04711, 2016.

[7] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training
deep neural networks with binary weights during propagations,” in
Advances in neural information processing systems, 2015, pp. 3123–
3131.

[8] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,” in
European conference on computer vision. Springer, 2016, pp. 525–542.

[9] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Branchynet: Fast
inference via early exiting from deep neural networks,” in 2016 23rd
International Conference on Pattern Recognition (ICPR). IEEE, 2016,
pp. 2464–2469.

[10] P. Panda, A. Sengupta, and K. Roy, “Conditional deep learning for
energy-efficient and enhanced pattern recognition,” in 2016 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2016, pp. 475–480.

[11] W. Hua, Y. Zhou, C. M. De Sa, Z. Zhang, and G. E. Suh, “Channel
gating neural networks,” in Advances in Neural Information Processing
Systems, 2019, pp. 1884–1894.

[12] K. Goetschalckx, B. Moons, S. Lauwereins, M. Andraud, and M. Ver-
helst, “Optimized hierarchical cascaded processing,” IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, vol. 8, no. 4, pp.
884–894, 2018.

[13] M. Price, J. Glass, and A. P. Chandrakasan, “A Low-Power Speech
Recognizer and Voice Activity Detector Using Deep Neural Networks,”
IEEE Journal of Solid-State Circuits, vol. 53, no. 1, pp. 66–75, Jan.
2018.

[14] B. Liu, Z. Wang, W. Zhu, Y. Sun, Z. Shen, L. Huang, Y. Li, Y. Gong,
and W. Ge, “An Ultra-Low Power Always-On Keyword Spotting Ac-
celerator Using Quantized Convolutional Neural Network and Voltage-
Domain Analog Switching Network-Based Approximate Computing,”
IEEE Access, vol. 7, pp. 186 456–186 469, 2019.

[15] J. S. P. Giraldo, S. Lauwereins, K. Badami, and M. Verhelst, “Vocell: A
65-nm Speech-Triggered Wake-Up SoC for 10-µW Keyword Spotting
and Speaker Verification,” IEEE Journal of Solid-State Circuits, pp. 1–
11, 2020.

[16] Y. Bengio, “Estimating or propagating gradients through stochastic
neurons,” CoRR, vol. abs/1305.2982, 2013. [Online]. Available:
http://arxiv.org/abs/1305.2982

[17] P. Yin, J. Lyu, S. Zhang, S. J. Osher, Y. Qi, and J. Xin, “Understanding
straight-through estimator in training activation quantized neural nets,” in
7th International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[18] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d Alché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc.,
2019, pp. 8024–8035.

[19] N. Zmora, G. Jacob, L. Zlotnik, B. Elharar, and G. Novik, “Neural
network distiller: A python package for dnn compression research,”
October 2019. [Online]. Available: https://arxiv.org/abs/1910.12232

[20] P. Warden, “Speech commands: A dataset for limited-vocabulary speech
recognition,” arXiv preprint arXiv:1804.03209, 2018.

[21] J. S. Giraldo and M. Verhelst, “Laika: A 5uw programmable lstm
accelerator for always-on keyword spotting in 65nm cmos,” in ESSCIRC
2018-IEEE 44th European Solid State Circuits Conference (ESSCIRC).
IEEE, 2018, pp. 166–169.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCAD.2020.3012320

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 12

Paul Palomero Bernardo was born in Tübingen,
Germany, 1996. He received the B.S. and M.S.
degrees in computer science from University of
Tübingen, Tübingen, Germany, in 2017 and 2020,
respectively, where he is currently pursuing the doc-
toral degree (Ph.D.) at the Department of Computer
Science.

His current research interests include neural net-
work hardware and design optimization.

Christoph Gerum was born in Filderstadt, Ger-
many, 1984. He received the Diploma degree
(M.S.) in computer science from the University of
Tübingen, Tübingen, Germany, in 2011, where he is
currently pursuing the doctoral degree (Ph.D.) at the
Department of Computer Science.

His current research focuses on performance
prediction for embedded systems and hardware-
dependent optimization of neural network inference.

Adrian Frischknecht was born in Reutlingen,
Germany, 1992. He received the B.S. and M.S.
degrees in computer science from University of
Tübingen, Tübingen, Germany, in 2015 and 2018,
respectively, where he is currently pursuing the
doctoral degree (Ph.D.) at the Department of
Computer Science.

His current research interests include speech
recognition, hardware-software co-design, and
energy-efficient neural network accelerators.

Konstantin Lübeck was born in Weimar, Germany
in 1989. He received the B.S. and M.S. degrees
in computer science from University of Tübingen,
Tübingen, Germany, in 2015 and 2018, respectively,
where he is currently pursuing the doctoral degree
(Ph.D.) at the Department of Computer Science.

His current research interests include performance
characterization, modeling, prediction of embedded
systems and heterogeneous computer architectures.

Mr. Lübeck received the master’s thesis scholar-
ship of the Stiftung Industrieforschung in 2018.

Oliver Bringmann (M’18) received the Diploma
degree (M.S.) in computer science from the Univer-
sity of Karlsruhe (KIT), Germany, and the doctoral
degree (Ph.D.) in computer science from the Uni-
versity of Tübingen, Germany, in 2001.

He was with the FZI Research Center for Informa-
tion Technology in Karlsruhe, Germany, in various
positions as Department and Division Manager and
Member of the management board, until 2012. He
has been Professor and Director of the Chair for
Embedded Systems at the University of Tübingen

since 2012, where he is also serving as Vice Head of the department of
computer science since 2014. His current research interests include electronic
design automation, embedded system design, timing and power analysis of
embedded software, embedded AI architectures, hardware-enhanced security,
and robust perception. He is author and co-author of more than 220 publica-
tions in the area of electronic design automation, embedded system design,
and SoC architectures for automotive electronics and edge devices.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCAD.2020.3012320

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.


