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Abstract—We present an automatic methodology to accurately
predict the performance of Deep Neural Network (DNN) accel-
erators using abstract descriptions of accelerator architectures
and DNNs with a high degree of flexibility. By mapping partially
unrolled neural network layers onto accelerator architectures,
we automatically construct an analytical performance model,
exploiting the dataflow-driven nature of DNNs that allows us to
evaluate only a few loop iterations to determine the performance
of a whole DNN layer.

Index Terms—Accelerator architectures, deep neural networks,
analytical models, prediction, neural network hardware.

I. INTRODUCTION

In recent years deploying Deep Neural Networks (DNNs)
for Internet of Things applications has moved from data
centers to edge devices. This shift sparked a new market
of hardware vendors providing various parameterizable DNN
accelerator architectures. To evaluate the performance of these
accelerators, vendors often supply simulators that are several
magnitudes slower than actual hardware. This fact makes it
extremely challenging to compare different architectures as
well as parameter sets for these DNN accelerators.

Therefore, we propose the Abstract Computer Architecture
Description Language (ACADL) that provides a high degree of
flexibility to cover a wide range of parameterizable accelerator
architectures on different levels of abstraction and an accurate
latency semantic. By mapping partially unrolled DNN layers
onto architectures described in ACADL, we generate custom
instructions, ranging from scalar to complex tensor operators,
that are propagated through an accelerator architecture —
tracking the structural and data dependencies of these instruc-
tions results in an Architectural Instruction Dependency Graph
(AIDG), which serves as an analytical performance model
for arbitrary accelerator architectures with complex memory
hierarchies, including but not limited to parallel and pipelined
accesses as well as local buffers.

II. ABSTRACT COMPUTER ARCHITECTURE DESCRIPTION
LANGUAGE

Computer/accelerator architectures are almost exclusively
communicated using block diagrams. Each block describes
the function of the architecture module it represents, while
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load [0x1004] => r1
add r0, r1 => r2
store r2 => [0x1008]
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Fig. 1. Example of an architecture described in ACADL and an AIDG that
represents the dependencies of custom instructions that are propagated through
that architecture.

arrows are used to depict how data is exchanged between
different modules. However, modeling computer/accelerator
architectures at system level is mainly done using HDLs or
ESL languages such as SystemC.

ACADL is an object-oriented language that defines eleven
classes that describe the basic building blocks of computer
architectures. Those classes are: ACADLObject (base class),
Memory, RegisterFile, PipelineStage, ExecuteStage, Instruc-
tionFetchStage, FunctionalUnit, MemoryAccessUnit, Instruc-
tionMemoryAccessUnit.

III. ARCHITECTURAL INSTRUCTION DEPENDENCY GRAPH

To accurately predict the performance of DNNs mapped
onto an accelerator architecture, we propose the Architectural
Instruction Dependency Graph (AIDG), capturing when an
instruction occupies a hardware module (ACADL object), in
which order an instruction propagates through an accelerator
architecture, resource conflicts, data dependencies, and buffer
fill levels, extending the Execution Graph proposed by Li et
al. [1].

An AIDG is a directed acyclic graph. Nodes of an AIDG
represent that an instruction occupies an ACADL object. There
are four different dependency types an edge can represent:
forward, structural dependency, data dependency, and a buffer
fill level dependency.



For each node there is a tenter and tleave which denote the
time in clock cycles when an instruction enters an architecture
module (ACADL object) and the time when the instruction
leaves the architecture module after all dependencies have
been resolved. In Fig. 1 an AIDG for an architecture executing
four instructions is depicted while the numbers inside each
node denote tenter, tleave.

A. Construction and Evaluation

To construct an AIDG for a partially unrolled loop kernel of
a DNN layer, each instruction of the loop kernel is propagated
through the given accelerator architecture in ACADL. For
each architecture module an instruction passes through, a
node is added to the AIDG. This node is then connected
with edges from the four different dependency types to the
appropriate nodes that were added before. We repeat this for
all instructions in a loop kernel to get the AIDG for one loop
kernel iteration.

To determine the end-to-end latency ∆t of a whole DNN
layer with n iterations, the nodes and edges of a single iteration
are added nprolog times to the AIDG until the end-to-end
latency ∆titeration and the overlap ∆toverlap of two consecutive
iterations do not change anymore. To determine nprolog we use
a heuristic.

Afterward we can calculate ∆tprolog by resolving all depen-
dencies for each node of the AIDG to determine tenter, tleave
and calculate the end-to-end latency of a whole DNN layer
with

∆t = ∆tprolog + (n− nprolog) · (∆titeration −∆toverlap).

The AIDG construction and evaluation take linear time
because each node is only visited once.

IV. RESULTS

We evaluated the presented methodology by describing
a general systolic array, an Eyeriss v1 [2] derived, and a
Plasticine [3] derived architecture in ACADL. Onto these, we
mapped TC-ResNet8 [4], AlexNet [5], and EfficientNet [6],
which cover a wide variety of DNN architectures and layers.

Additionally, we implemented an event-based simulator
based on the ACADL latency semantic using the Python
package SimPy [7] to validate the predicted cycles from the
AIDG evaluation. The predicted cycles for each architecture
by the AIDG evaluation matched the simulated cycles exactly.
Table I presents how many iterations of a DNN have to be
evaluated using an AIDG to get an accurate performance
prediction compared to the actual number of iterations.

Fig. 2 shows that the AIDG construction and evaluation time
depends linearly on the amount of nodes in an AIDG. This
shows that our performance prediction framework is scalable
even for large accelerator architectures.

V. CONCLUSION

We presented a fast yet accurate automatic performance
prediction framework for DNN accelerator architectures based
on the Abstract Computer Architecture Description Language

TABLE I
COMPARISON OF THE AMOUNT OF DNN LAYER ITERATIONS (

∑
ITERS.)

TO THE AIDG EVALUATED ITERATIONS AND THE AIDG EVALUATION
RUNTIME t FOR DIFFERENT ACCELERATOR ARCHITECTURES AND DNN

MAPPINGS.

Accelerator DNN
∑

iters. eval. iters. t [s]

Systolic
Array

TC-ResNet8 30 004 468 (1.56 %) 106
AlexNet 30 871 680 372 (0.001 %) 81
EfficientNet 26 074 782 4134 (0.016 %) 948

Eyeriss v1
derived

TC-ResNet8 8045 678 (8.43 %) 411
AlexNet 10 116 488 370 (0.004 %) 344
EfficientNet 14 080 613 2674 (0.019 %) 1841

Plasticine
derived

TC-ResNet8 8934 568 (6.36 %) 1451
AlexNet 8 329 852 454 (0.005 %) 1122
EfficientNet 21 526 106 3581 (0.017 %) 5965
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Fig. 2. Linear scaling of the AIDG construction and evaluation time
depending on the amount of AIDG nodes.

(ACADL). Mapping partially unrolled deep neural network
(DNN) layers onto architectures described in ACADL, we con-
struct and evaluate an Architectural Instruction Dependency
Graph (AIDG) that allows us to evaluate as few as 0.001%
of all loop iterations of a DNN while maintaining very high
accuracy.
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