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Abstract— This paper presents a method for the simulation
of images in the scope of virtual camera prototypes under the
constraint of color correctness. This is a first step to gain
a complete simulatable camera model that can be used to
generate synthetic images using real data. Each real camera
system has its own color processing characteristics. Real images
recorded with a reference camera model can be computationally
simulated as if they have been recorded with another real
or virtual camera. The resulting images are transformed to
underly the color characteristics of the targeted virtual camera
system. Our approach can be used at the design phase of
vision-based advance driver assistance systems to verify the
exact behaviour under varying optical properties of the optical
system and to test and evaluate the overall robustness of the
system when color processing changes. It can as well lead to
a decision basis for the selection of the hardware to be used.
In this paper, we show how cameras can be calibrated and
in a second step we evaluate the simulation errors. Finally, we
apply our simulation to a traffic sign recognition algorithm and
evaluate its behaviour in relation to ground truth data.

I. INTRODUCTION

The steady increase in the performance of system-on-
chip (SoC) components by reducing the feature size and the
increase of the integration density and the concomitant in-
crease in energy efficiency, made the use of such components
more attractive in mobile applications. This trend is also
visible in the automotive industry. In todays cars, hundreds
of microelectronic chips are used for power train, safety,
comfort and infotainment applications and the embedded
software content is measured by hundreds of megabytes.
Compared to previous vehicle generations that were fitted
with a fairly small number of driver assistance systems such
as Antilock Braking System (ABS) and Electronic Stability
Control (ESC), the variety of driver assistance systems in
modern vehicles is much higher. Today’s Advanced Drivers
Assistance Systems (ADAS) functions like light assistant,
lane departure warning system, traffic sign / light recognition
up to night vision displayed in the windshield have been
implemented. Many of these systems are vision-based and
the trend is rising. Also, the current autonomous driving
concept cars heavily depend on vision-based systems. The
major problem is to guarantee functional safety requirements,
especially if advanced driver assistance systems are taking
over more and more active control over the vehicle. The
development of safety-relevant electrical / electronic / pro-
grammable electronic systems is covered by two standards:
the basic functional safety standard IEC 61508 and the

ISO 26262 as an adaption for the automotive domain. Both
standards recommend the use of a failure mode and effect
analysis (FMEA) to reveal faults and the resulting effects. In
order to incorporate FMEA in the early development states,
the use of virtual prototypes is essential. The stimulation of
the virtual prototype is defined by the input of the ADAS
systems which usually consist of video, radar, LiDAR or
ultrasonic sensors which need to be modeled as well. How-
ever, these systems have to operate correctly in very different
environmental conditions which are strongly influenced by
the traffic situation, weather conditions, illumination, etc.
This requires a huge amount of on-road captures to test all
combinations of environmental influences. Nevertheless, a
total coverage is unrealistic. This paper presents a method
for the simulation of color processing of optical virtual pro-
totypes and therefore closes the gap between the simulation
of the cyber part and the physical world. With the presented
methods it is possible to test combinations of multiple optical
sensors with ADAS algorithms and evaluate their behaviour
with respect to color characteristics as early as at the design
stage.

II. RELATED WORK

The challenges in safety evaluation of automotive elec-
tronic using virtual prototypes is stated in [1]. Most vision-
based ADAS techniques heavily rely on machine learning
algorithms, such as neural networks and support vector
machines (SVM) as presented in [2], [3] and / or bayesian
networks [3]. All these approaches have in common that
they need to be trained with well selected training data
[4], [5]. There are approaches to generate synthetic training
data, where image degradation [6] or characteristics of the
sensor and the optical system [7] are used to enlarge the
training data. Most ADAS employ several sensors, networks
and Electrical Control Units (ECU) to fulfill their work,
which results in a complex scenario that can be considered
as a Cyber-Physical System (CPS) [8]. A methodology to
generate virtual prototypes from such large systems while
keeping a maintainable speed is shown in [9]. It uses different
abstraction levels to reach high performance of the controller
and network models which are connected to a physical
environment simulation. Another paper that covers virtual
prototyping in the scope of ADAS was presented by Reiter
et al [10]. They show, how robustness and error tolerance of
ADAS can be improved with error effect simulation.



Very basic insights on how the transportation of light and
the formation of images works come from [11] and [12]. In
[13], Debevec and Malik show how the incident irradiance at
the sensor can be reconstructed using the response function
of the optical system. With some adaptions, the reconstructed
irradiance can be used to simulate another color processing.
In [14] Kolb et. al propose a physically based camera model
to correctly model the transport of light through the optical
parts of a camera and the calculation of images from known
irradiance. Finally, [15], [16] and [17] deal with methods
to convincingly merge real and virtual scenes which is also
related to some of the tasks of this paper.

III. SIMULATED CAMERAS AS A CYBER-PHYSICAL
SYSTEM

By definition, a Cyber-Physical Systems consists of sen-
sors which perceive the physical environment and communi-
cate their information to a cyber part - an embedded system
- to process this information. Accordingly, we can consider
ADAS, which collect environmental data and process them in
one or more ECUs to derive suggestions or driving strategies,
as a CPS. Very common sensors in the range of ADAS are
cameras.

Depending on it’s specifications, a camera offers e.g.
autofocus, automatic white balance, automatic exposure, etc.
which are all controlled by an embedded system. A camera
itself could also be considered as a CPS, but in the following,
we consider cameras as a sensor of an ADAS. For virtual
prototyping of ADAS, it is important to evaluate all possible
influences on the system. Each of the sensors of such a CPS
severely influences the performance of the overall system, as
each sensor reacts differently to environmental conditions.
These conditions obviously can affect the scene gathered
through the camera directly by changing the brightness,
contrast and / or depth of field. Furthermore they may
exert indirect influence, for example through drifts of the
characteristic curve caused by different temperatures.

A. Sensor characteristics

Optical sensors are constructed in a way, such that they
show similar behaviour as analog film. The digital quantiza-
tion of scene radiance introduces new parameters for sensors
though. Each of them has more or less influence on the
outcome of the imaging process of a digital camera. In order
to simulate a sensor, these factors have to be attended.

Digital sensors have a fixed amount of light-sensitive
elements (pixels), that are mounted on a chip. The horizontal
and vertical amount of these light-sensitive elements deter-
mines the resolution of the resulting images. Each pixel may
be realized as charge coupled device (CCD) or in CMOS
technology. In any case, the incident light is proportional to
the analog-to-digital converted charge value. Each pixel is
being hit by light from multiple directions and the incident
light may contain large parts of the visible spectrum. For
color images, digital cameras have to record the red, green
and blue components of the light. Since the pixels are
sensitive to the whole visible spectrum, a color filter is put in

front of each pixel such that is only transmissive to the red,
green or blue parts of the spectrum. Indeed, a pixel for red
color information is not only responsive to a sharply defined
area around 700 nm wavelength, but rather over the whole
spectrum. The intensity of reaction of a pixel to the different
parts of the spectrum is called the spectral response.

During the analog-to-digital conversion process some
noise is introduced to the pixel values. This is a well-known
effect that occurs at all stages of electronic signal processing.
Sensor noise can be thought of a statistical shift of the
signal value from its perfect ground truth. Each sensor has its
own noise behaviour and therefore noise is a characteristic
parameter of each sensor. For simulation purposes, it is
important to note that if the data of the reference system
is low-noise, the noise behaviour of a sensor with high noise
level may be calculated and artificial images of the simulated
camera may be generated. If the reference system contains
heavy noise, it is difficult to get rid of it, though.

The electronic components that process the signal have
a varying output when the temperature changes. This effect
usually is weak, but if the region of working temperature is
large this may become noticeable.

There are lots of parameters to take care of. This paper fo-
cuses specifically on the color correctness of the simulation,
thus the spectral response and the color balance of the color
channels have to be considered here. The other effects will
continuously be investigated to fortify the whole simulation
process.

B. Simulation of virtual cameras

To simulate the behaviour of a camera, it is necessary
to first understand the digital image formation process. In
the moment when the trigger button of a camera is pushed,
light from the scene is falling through the objective and the
aperture onto the sensor backplane. Here it is registered and
then converted into a proportional voltage value. It is then
being (often nonlinearly) mapped to a pixel value in the final
image. This nonlinear mapping is introduced to account for
the high dynamic range many natural scenes are showing. In
order to be able to digitize a wider range of the scene light,
the lower and the upper areas of illumination are compressed
stronger.

Fig. 1. The geometric relation between incident radiance and sensor
irradiance

Sensor irradiance and scene radiance have a direct de-
pendency to each other. Radiometry states that the radiance
L(x

′
, x) falling through the entrance pupil at x

′
and the



irradiance E(x) focusing at a point x on the sensor plane
are related through ([14])

E(x) =
1

Z2

∫
L(x

′
, x)cos4θdx

′
(1)

where Z is the distance from the sensor plane to the exit pupil
and θ is the angle between the sensor plane normal and the
ray direction. If we assume that the entrance pupil subtends
only a small solid angle, θ can be considered constant and
we get a direct relationship between sensor irradiance and
integrated scene radiance as

E(x) =
1

Z2
cos4θL(x) (2)

where L(x) denotes the integrated scene radiance at x. Figure
1 shows the geometry of this relation.

Additionally, these equations should be considered func-
tions of the wavelength λ. A digital sensor will sample the
spectrum typically around three discrete values, one for red,
green and blue. Therefore we add an index [r|g|b] to the
equations to indicate which discrete color channel is referred
to.

As already discussed, the sensor irradiance is mapped to
pixel values in a camera specific and most often nonlinear
way. In [13], Debevec and Malik present a method to
determine this mapping function. First they state, that for
the exposure at the sensor only the product of irradiance and
exposure time is important. It is defined as

X(x) = E(x) ∗∆t (3)

The exposure X(x) at point x on the sensor is then
mapped to the final pixel value Z(x) by the so-called
response curve f . The authors show, that it is reasonable
to assume that f is invertible, such that

X(x) = f−1(Z(x)) (4)

Summarized, we have direct relationships between scene
radiance, sensor irradiance, exposure and the final pixel
value. To simulate the color characteristic of a virtual camera
using images taken with a reference model, we can now
follow the path backwards, i.e. from pixel value to exposure,
then to irradiance and possibly to scene radiance. Then
we can exchange the color characteristics of the reference
model with the one of the simulation system and redo the
imaging process. Figure 2 summarizes the relations between
the different quantities.

Yet, there are a few things to do before we can thread this
path. First, we need to talk about how to get the response
curve of a sensor, connecting pixel value with exposure. Then
we need to take care of the color balance. And finally, the
method used by [13] to reconstruct the response curves only
yields relative exposure values, valid for only one imaging
system. If we’d like to use them with another simulated
camera, care needs to be taken on how to remap them.

The first part of the problem, building response curves, is
described by Debevec and Malik in detail. They use a series

Fig. 2. Quantities in the image formation process

of images taken at different exposure times, from very low to
very high exposures. In their next step, they find an optimal
solution of the response curve by minimizing a quadratic
function under some smoothness terms. However, since they
arbitrarily center the response curve by setting unit exposure
at a pixel value of 128, this mapping only provides relative
information. Further, this method is applied to each color
channel separately, leading to three unknown scaling factors
for the color channels. So we can formulate the following
mathematical equations:

X[r|g|b](x) = f−1[r|g|b](Z[r|g|b](x)) (5)

X
′

[r|g|b](x) = α[r|g|b] ∗X[r|g|b](x) (6)

where X
′

[r|g|b](x) denotes the color balanced response curves
and α[r|g|b] the correction factors. The latter can be deter-
mined by taking images of a series of graylevel fields with
known scaling factors of the color channels (e.g. R = G =
B). These scaling factors should recur at the exposure level
and therefore the scaling factors for the response curves can
be chosen accordingly. After this step, the calibration of the
camera itself is finished. We are now able to simulate pictures
taken at different exposure times from one taken picture and
we are able to calculate the relative irradiance values from
a taken picture.

As stated above, the irradiance values of one camera
system are not directly usable in another one. There are two
options to convert them. First, the relative sensor irradiance
values could be calibrated to absolute scene radiance values
using a light meter. By taking images of a diffuse and
uniformly lit area of known radiance, the scaling factors
between relative sensor irradiance and absolute scene radi-
ance per camera system can be determined. Second, a direct
conversion factor from relative irradiance of camera 1 to
relative irradiance of camera 2 could be determined, directly
mapping the sensor irradiance values. The advantage of the
first method is the possibility of getting real physical radiance
values. For some simulation steps this could be necessary or
yield better results. We chose to take the second method
of direct mapping since we are not currently using absolute
radiance values in our simulation. Furthermore, that way we
are not inducing new uncertainties through the calibration
with another measurement device. The disadvantage is, that
the direct mapping between camera systems is only valid for
fixed aperture and color balance values.



To find the scaling factors for converting irradiance of
camera 1 to camera 2, the following method can be applied.
A series of color patches sampled throughout the RGB
space is prepared. The exact color values of the patches
are not important. With each camera system that shall be
calibrated, multiple images of the calibration patches are
taken at different exposure values. We gain a matching of
pixel values Z[r|g|b],j in each color channel. These can be
converted to relative irradiance values

E[r|g|b],i =
f−1(Z[r|g|b],j)

∆tj
(7)

of camera i. These correspondences could be used to calcu-
late a per-channel calibration factor from camera i to camera
j. However, it has shown to be problematic to only use
per-channel color information in this step. Optical sensors
are sensitive to light in a relatively large area of the visible
spectrum. The color channels are overlapping to some extent,
i.e. the irradiance of the red channel includes some irradiance
of the greenish spectrum and vice versa. During our tests, it
has shown to be more robust to compensate for this effect
by including all the color information into a set of linear
equations. By solving the linear system of equations

Ei ∗ a = Ei′ (8)

in a least squares sense, we obtain the solution vector a.
Matrices Ei row-wise contain the sensor irradiance values of
all color channels of camera i. The solution vector models a
dependency of each color channel of camera i

′
of all color

channels of camera i and yields the appropriate conversion
factors as a linear combination. We receieve a new set of
equations for that task:

Er,i′ (x) = a1,1 ∗ Er,i + a2,1 ∗ Eg,i + a3,1 ∗ Eb,i (9)

Eg,i′ (x) = a1,2 ∗ Er,i + a2,2 ∗ Eg,i + a3,2 ∗ Eb,i (10)

Eb,i′ (x) = a1,3 ∗ Er,i + a2,3 ∗ Eg,i + a3,3 ∗ Eb,i (11)

These equations model the conversion of sensor irradiance
between cameras, accounting for the channel interdependen-
cies. After this step, the camera calibration step has been
finished and the simulation of the imaging process with the
response characteristics of a camera other than the one the
original scene has been recorded with can be done.

C. Changing scene properties in irradiance space

A nice side effect of the return to the irradiance space is
the possibility of the elegant modification of scene brightness
and contrast. The irradiance space is unbounded and does
not suffer from saturation and loss of information. If the
original scene has been recorded with full available scene
information, it is now possible to easily adapt the scene
with respect to brightness and contrast and then remap to the
pixel space of a virtual camera. Some of the more complex
simulation tasks need those kind of basic operations to yield
realistic results. Rain simulation, for example, can only be

realistic if the typically low brightness and contrast of those
scenes can be simulated, too.

IV. RESULTS

To verify the correctness of the color processing simu-
lation, we have applied the calibration process to two test
cameras. The first camera is our reference system for the
simulation environment. It is a Point Grey Bumblebee XB3, a
camera system capable of sensing in stereo with a resolution
of 1280 x 960 pixels. The camera is supplied with a software
development kit, allowing direct control of many important
parameters. The second camera is a Sony α37 DSLR with
a resolution of 4912 x 3264 pixels. In manual mode, this
camera allows a direct setting of all important parameters.
The camera has been equipped with a Minolta 24 mm
lens. We chose two very different camera systems for this
verification step to test the robustness of the simulation
process.

Figure 3 shows the color-balance-calibrated response
curves of the two cameras at fixed white balance settings.
It shows the mapping of pixel values to log exposure and
has been created by using the method of [13] for each color
channel and then calibrating the color channels relative to
each other as described above. At first glance, it is easy to see
the different characteristics. The Bumblebee XB3 has a near-
linear behaviour in all color channels, whereas the α37 has
some clear nonlinear responses especially in the lower and
upper areas of exposure. The second curve looks much more
bumpy than the first one - the uncertainties should be bigger
here. Both cameras respond much stronger to illumination in
the blue spectrum than in the red or green spectrum.

Fig. 3. Response curves with fixed white balance values (BB XB3: [Red:
500; Blue: 800] and α37: ”‘cold white”’)

To verify the camera-internal behaviour when simulating
different exposure times, we recorded 9 gray values as
ground truth. The simulation of exposure times can be done
by addition in the log exposure space. The red channel has
been selected as the reference channel and the other channels
have been calculated by adding the red channel difference to
them. The red channel error therefore is always 0. The mean
and standard deviations of this simulation are shown in table



Fig. 4. Simulation results against ground truth

I. As you may notice, the standard deviations lie within a
few pixels.

Camera µ(Diff) [R,G,B] σ(Diff) [R,G,B] max(Diff) [R,G,B]

BB XB3 0, -0.89, 3.78 0, 1.45, 6.67 0, -3, -11
α37 0, 2.33, 4.56 0, 2.45, 5.05 0, 8, 15

TABLE I
RESULTS OF THE CAMERA INTERNAL SIMULATIONS

As a first result of the second calibration step, the intra-
camera calibration, we obtained the following irradiance
conversion factors for conversions from bumblebee to α37:

abb→α37 =

 0.29 −0.07 −0.03
−0.03 0.45 −0.05
−0.06 −0.12 0.41


Notable is the clear influence of the blue spectrum on the

sensed green irradiance, whereas the red and blue channels
are relatively independent. These interdependencies have to
be taken into account.

To further verify the correctness of the color simulation,
we prepared 30 color test patterns each equally sampled
from the RGB and CYMK space. Each test pattern has
been recorded at three different exposure times, yielding
180 ground truth correspondences. Figure 4 displays the log
irradiance simulation results (dashed lines) in comparison to
the ground truth (continuous lines). These results have been
generated using equations 5, 6 and 7 to gain the irradiance
values for the BB XB3 (the reference system) and then
equations 9, 10 and 11 to obtain the simulated irradiances of

the α37. The remapping into pixel space is straightforward
then.

Figure 4 shows clear similarity between the simulation
and real data. The green channel suffers from a few big
outliers at the extreme values of irradiance. If the irradiance
in the green channel is low, the error of the simulation rises.
This is the result of the big uncertainties around the extrema
together with the high interdependency of the green channel.
In the blue channel most outliers are due to saturation of
the ground truth data (e.g. the one at test pattern 60). Table
II shows mean and standard deviations of the simulation.
Although the maximum deviations are a bit high, mean
and standard deviations show good approximation of the
simulation results.

µ(Diff) [R,G,B] σ(Diff) [R,G,B] max(Diff) [R,G,B]

0.54, -0.19, 2.83 5.81, 7.38, 8.29 17, 20, 23

TABLE II
RESULTS OF THE SIMULATION OF α37 COLORS WITH BB XB3 IMAGES

To evaluate the behaviour of an ADAS on simulated
data, we recorded a scene with approximately 6000 frames
of german traffic signs and calculated the rate of correct
recognition and the rate of false positives with the two
camera systems. The cameras have been mounted as close
to each other as possible. The TSR algorithm is an in-house
developped application which provides basically three steps
to recognize a traffic sign: First a hough transformation is
applied to find circular areas, second the image is segmented
and third a support vector machine classifies the image



segment. Since it operates on grayscale images only, it is
not directly color dependent, but it is sensitive to changing
contrast and noise. Along with the ground truth application,
we did a simulation of the α37 using BB XB3 records. These
simulated images have also been applied to the TSR. Table
III shows the recognition results. On simulated images, the
TSR algorithm has detected about 30 traffic signs fewer than
on ground truth images. But the detection rate of the BB
XB3, with which the SVM has been trained, is significantly
higher than the ground truth of the α37 as well as the
simulated α37 images. Since the simulated images are color-
correct but contain a lot more noise from the small BB XB3
sensor, it is not surprising, that the simulation results still
differ. The low overall recognition rate of the TSR algorithm
is because of the limitation of its hough transform step to a
fixed circle radius for performance reasons.

BB XB3 α37 BB XB3 → α37

Matches 244 113 79
Mismatches 55 47 42

TABLE III
RESULTS OF THE TSR ON GROUND TRUTH AND SIMULATED DATA

V. CONCLUSION

We presented a method to calibrate two optical systems
in terms of color correctness and evaluated the differences
of the simulation to ground truth data. We have shown how
to apply the simulation to an ADAS to derive statements
towards its robustness under varying conditions. The results
of the color simulation still suffers from two problems: in
the areas of extremely high or low irradiance values the
simulation yields high differences to ground truth data since
the response curves of the camera systems are highly dy-
namic in these areas. The second problem occurs, whenever
the reference systems pixel values go into saturation. If this
happens, data is lost and the simulation cannot find the
correct irradiance values. In the non-saturated areas of sensor
irradiance the results are lying within a few pixels to the
ground truth. To cope with these problems, RAW sensor
data could be used to gain a higher values margin. Using
e.g. 16 bit per color channel prevents the irradiance values
from going into saturation too early, which should result in
more precise simulation results. Unfortunately, our reference
system does not support streaming of 16 bit stereo RAW
data via its API. Another difficulty is the interdependency
of the parameters, such as gain, noise and color output. To
further improve the color simulation, the other parts need to
be simulated as well.

VI. FUTURE WORK

As color correctness is only one necessary parameter to
consider at the subject of simulating a whole optical sensor,
the next steps are to find suitable simulations for the other
parameters and verify them against ground truth. We are

currently working on improvements of the simulation. The
focus lies on finding simulation parameters that lead to the
same effects as real data in the ADAS testing algorithms.
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