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Abstract: For autonomous driving to operate safely it
is crucial to perceive surrounding objects correctly. Not
only detection but also state estimation (track) of a per-
ceived object is urgent. The state is required to enable a
safe motion planning, since it allows to predict the future
position of an object. To include only valid information,
the state estimations must be maintained to determine
which track is active and which is not. Mostly, a sim-
ple count-based approach is used. For this, we present
an investigation of two common approaches from non-
cooperative track management in comparison to two new
management strategies to maintain tracks in a cooper-
ative scenario. We evaluate them using three simulated
scenarios with a varying rate of cooperative vehicles. A
confidence-based approach was able to increase the aver-
age precision by up to 9 percentage points.
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tion, Object Tracking, Track Management, V2X

Zusammenfassung: Für den sicheren Betrieb des au-
tonomen Fahrens ist es von entscheidender Bedeu-
tung, die Objekte in der Umgebung korrekt zu de-
tektieren. Nicht nur die Detektion, sondern auch die
Schätzung des Zustands (Track) eines wahrgenomme-
nen Objekts ist dringend erforderlich. Der Zustand wird
benötigt, um eine sichere Trajektorienplanung zu er-
möglichen, da er es erlaubt, die zukünftige Position eines
Objekts vorherzusagen. Um nur gültige Informationen
einzubeziehen, müssen die Zustandsschätzungen verwal-
tet werden, um zu bestimmen, welcher Track aktiv ist
und welcher nicht. Daher wird meist nur ein Anzahl-
basierter Ansatz verwendet. In dieser Arbeit unter-
suchen wir zwei gängige Ansätze des nicht-kooperativen
Trackmanagements im Vergleich zu zwei neuen Manage-
mentstrategien zur Verwaltung von Tracks in einem ko-
operativen Szenario. Wir evaluieren sie anhand von drei
simulierten Szenarien mit einer variierenden Rate koop-
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erativer Fahrzeuge. Ein Konfidenz-basierter Ansatz erre-
ichte eine Steigerung der Average Precision um bis zu 9
Prozentpunkt.
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Wahrnehmung, Objekt Tracking, Track Management,
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1 Introduction
Interest in the development of autonomous vehicles has
grown increasingly in recent years, both in research and
industry. One of the most essential reasons for this is the
promising contribution of automated vehicles to increas-
ing road safety. The reason for 90 % of traffic accidents
with fatalities is due to human error [1], therefore au-
tonomous vehicles have the potential to make traffic as a
whole safer. However, the realization of autonomous driv-
ing poses several challenges.

Autonomous vehicles must perceive their surround-
ings correctly and comprehensively. Therefore, these ve-
hicles are equipped with various sensors like cameras, Li-
DAR, and RADAR. In real world driving the environment
can be very challenging. The impact of adverse weather
conditions on automotive surround sensors degenerates
the perception capabilities [2, 3]. Hence, it is essential
to develop perception algorithms that are both robust
against these conditions and well tested in such situa-
tions. This can be achieved by training and testing the
perception algorithm on diverse data sets extended by
simulated weather effects [3, 4].

Besides the influences of weather on automotive sen-
sors, the perception of self driving vehicles is also limited
by the maximum sensor ranges and concealment by other
road users or infrastructure [2, 5]. Therefore, a compre-
hensive perception is not possible in most cases for a sin-
gle vehicle. Hence, cooperative perception using commu-
nication between vehicles or infrastructure is considered
as a promising technology for realizing autonomous driv-
ing [5, 6]. Cooperative perception makes it possible to
perceive the environment from different viewpoints, thus
extending the locally perceived environment.
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Based on the detection of an object, its state must
be estimated using the object tracking. In the case of
cooperative perception tracking comes with further chal-
lenges, like the trustworthiness estimation of perceived
information [7]. Many publications consider different ob-
ject tracking approaches but moreover, the management
of tracks is an important step which is the main focus
of this work. Track management includes the process of
track creation, track deletion and the determination if a
track is active based on current and previous perception
iterations.

The goal of this work is to analyze the effects of differ-
ent track management strategies on the perception per-
formance in a cooperative driving context. Therefore, we
present two common count-based approaches which are
commonly used for local object tracking, one confidence-
based method from Benbarka et al. [8] and furthermore,
we propose a new management strategy combining the
count and the confidence-based approaches in Sect. 3.
Section 4 presents the conducted experiments and the
obtained results. Finally, in Sect. 5 we conclude our work
and give an outlook to further research.

2 Related Work
Object tracking describes the estimation of a vehicle’s
state based on its detection. The state can consist of po-
sition, the kinematic state with velocity, acceleration, ori-
entation and turn-rate and information about size and
shape of the object [9]. In contrast to image-based object
detection, the object tracking uses multiple sequential im-
ages. Moreover, the object tracking can be divided into
offline and online tracking. Here, offline tracking means
that all images are taken into account and in the online
tracking an actual image in combination with the previ-
ous images is used [10].

For object tracking various approaches such as
Bayesian dynamic state estimation, the Gaussian sum
filter or a sequential Monte Carlo method exist [9]. Fur-
thermore, particle filters or the well known Kalman Filter
with different movement models like constant acceleration
or constant velocity can be employed. A detailed overview
of different object tracking algorithms is presented by Vo
et al. [11].

While different works consider combining these algo-
rithms with various cost metrics for an improved track-
ing, the track maintenance is mostly neglected. To deter-
mine if a track is active mostly the count-based method
is used [8]. The maintenance of tracks with a confidence-

based approach was presented by Sun et al. [12]. Since
they used an addition update function, the approach leads
to a high number of false positives. A similar approach
was presented by Benbarka et al. [8]. They improved the
score update functions and achieved better results com-
pared to the count-based approach of Sun et al.

To evaluate object tracking different metrics can be
applied. As performance metrics precision and recall [13]
are very well known in the field of object perception.
These metrics describe the rate of perceived objects and
the rate of correct track estimations. For this, tracking
or detection information must be classified into true pos-
itive, false positive, false negative. Moreover, the average
precision (AP) which is defined as the area of the corre-
sponding precision recall curve is a common metric [14].
Alternatively, the interpolated average precision as intro-
duced by Everingham et al. [15] can be used to reduce the
influence of small variations. The interpolated AP can be
calculated as shown in Eq. (1) where 𝑝𝑖𝑛𝑡𝑒𝑟𝑝(𝑟) describes
the interpolated precision score for a given recall 𝑟.

𝐴𝑃 = 1
11

∑︁
𝑟∈{0,0.1,...,1}

𝑝𝑖𝑛𝑡𝑒𝑟𝑝(𝑟) (1)

We use the AP to incorporate both precision and re-
call. The AP averaged over all available classed is called
mean average precision (mAP).

The more complex metrics Multiple Object Tracking
Accuracy and Precision were presented by Stiefelhagen
et al. [16]. These metrics are more meaningful due to the
usage of the distance between tracking hypothesis and
real position. The safety metric by Volk et al. [17] al-
lows an evaluation of detection and tracking safety using
common performance metrics combined with additional
factors such as the object’s relevance and velocities.

3 Track Management Strategies
As already introduced in Sect. 1, track management plays
a crucial role for the perception quality. The track man-
agement is responsible for managing the lifetime of tracks
including the creation and deletion. Before track man-
agement comes into play, detected objects need to be
matched to already present tracks within the environ-
mental model (EM). A detected object can then either
be matched to an already existing track or will be a new,
unmatched one. As last there also exist tracks with no
assigned detected objects.

If a new, unmatched object is detected a new, yet in-
active track gets created. When the track is e.g. observed
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soon as th𝑐𝑐 is reached and will be incorporated into the
EM.

Confidence-based
We use the confidence-based track management presented
by Benbarka et al. [8]. This track management uses the
confidence of a track to determine if the track is active or
not. Therefore, three cases have to be considered. First,
the matching determines objects without a given track,
then a track 𝑡𝑜 with the confidence conf𝑜 from the detec-
tion of 𝑜 is initialized, this confidence must exceed a given
threshold for new tracks thconf−n. The second case cov-
ers the scenario that no detection for an existing track
occurred at a time 𝑖, here the confidence of the track
conf𝑡,𝑖 is decreased by a defined decay 𝑑 as described in
Eq. (2).

conf𝑡,𝑖 = conf𝑡,𝑖−1 − 𝑑 (2)

For an existing track with a match first Eq. (2) is applied,
then a confidence update function (see Eq. (3)) is applied
to determine the track confidence [8] .

conf𝑡,𝑖 = 1 −
(1 − conf*

𝑡,𝑖) · (1 − conf𝑜,𝑖)
(1 − conf*

𝑡,𝑖) + (1 − conf𝑜,𝑖)
(3)

conf*
𝑡,𝑖 describes the track confidence after applying

Eq. (2). Finally, a track is considered as active if conf𝑡,𝑖

exceeds a defined confidence threshold thconf .

Confidence and Count-based
We propose the confidence and count-based track man-
agement which combines two strategies. To be incorpo-
rated into the EM, a track must fulfill the requirements
of count-based as well as confidence-based track man-
agement. A track is considered active if the observation
count is greater or equal to the corresponding thresh-
old (𝑜𝑐 ≥ th𝑐) and additionally the confidence of the
track must be at least equal to the confidence threshold
(conf𝑡 ≥ thconf).

4 Evaluation of Track
Management Strategies

Three simulated scenarios are considered for the evalua-
tion: Highway with dense traffic (60 vehicles/km), high-
way with sparse traffic (30 vehicles/km) and a road cross-
ing. For the highway scenarios, the same highway section
with a length of 660 m and three lanes per direction is
used. The crossing has a size of about 120 m with two
lanes per direction. CARLA [18] is used as simulation en-
vironment. As framework for implementing the different

track management strategies the RESIST framework de-
veloped in our team by Müller et al. [19] with the improve-
ments by Volk et al. [6, 20] is employed. The matching
problem will be solved by the Hungarian algorithm [21].
For each scenario three equipment rates of cooperative
vehicles are investigated: 5 % (ER5), 15 % (ER15) and
25 % (ER25).

To obtain the best perceptual performance with our
track management system we conducted a parameter
space exploration for the aforementioned thresholds of
the proposed strategies in Sect. 3. An overview of the
search space for the single thresholds and parameter is
shown in Table 1. It must be stated that the given pa-
rameter search space for th𝑐 and th𝑐𝑐 is rather small.
However, using only one detection is not possible as the
tracking requires at least two detections. Higher num-
bers would lead to a too late integration of the track into
the EM. For each parameter we conducted 50 runs of
each scenario and for each equipment rate of coopera-
tive vehicles. Afterwards, we consider the minimum and
maximum achieved AP overall equipment rates. Then, a
sub-interval [𝑚𝑎𝑥𝐴𝑃 − 5 % · 𝑖, 𝑚𝑎𝑥𝐴𝑃 ] where 𝑖 ≥ 1 de-
scribes the step number, is constructed. We increase 𝑖

while 𝑚𝑎𝑥𝐴𝑃 − 5 % · 𝑖 > 𝑚𝑖𝑛𝐴𝑃 holds and evaluate if
a given parameter set achieves an AP within this inter-
val for all three test scenarios. If multiple parameter sets
satisfy the condition, the average AP overall scenarios is
calculated and the one with the highest resulting AP is
chosen. The resulting best parameter set overall test sce-
narios is listed in Table 1.

Parameter Search space Best Result

th𝑐 [2,3] 2
th𝑐𝑐 [2,3] 2
thconf [0.5, 0.6,. . . , 0.8] 0.7
thconf−n [0.5, 0.6, 0.7] 0.6
𝑑 [0.025, 0.05,. . . , 0.2] 0.075

Table 1: Parameter space for the exploration of the thresholds for
the different track management strategies.

An overview of the results for the evaluated scenarios
is shown in Fig. 2. In the highway scenario with dense traf-
fic and ER5 the achieved AP was about 15.6 % for count-
based as well as for the confidence and count-based strat-
egy. Confidence-based performed best with 17.26 %, con-
secutive count-based performed worst with about 13 %.
For ER15 and ER25, the count-based and confidence
and count-based strategy achieved similar results with
about 23.8 % and 32.5 % respectively. Equivalent to ER5,
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Fig. 2: Results of the AP metric on the evaluated scenarios with varying rates of cooperative vehicles. Left: Highway scenario with a
high traffic density. Center: Highway scenario with a low traffic density. Right: Scenario at a road crossing

confidence-based performs best and the AP was increased
by about 5 percentage points (p.p.) for both ER15 and
ER25 compared to the count-based track management.

The highway scenario with sparse traffic and ER5
showed an AP of about 5 % for all strategies. Again,
the confidence-based strategy performs best with up to
24.71 % for ER25 which corresponds to an improve-
ment of 8.36 p.p. towards the count-based approach. The
consecutive count-based strategy performed significantly
worse and reached only up to 9 %.

For the crossing scenario the lowest AP scores ap-
peared since this is the most complex scenario. For ER5
all strategies have an AP of about 1.2 %. The count-
based strategy achieved an AP of 6.77 % (ER15) and
11.23 % (ER25). For the crossing scenario the confidence
and count-based strategy showed slightly better results
than the count-based with an AP increase of 0.35 p.p. and
1.01 p.p. for ER15 and ER25 respectively. For the con-
secutive count-based strategy the AP of ER15 and ER25
is similar to ER5. Comparable to the highway scenar-
ios, the confidence-based strategy outperforms the other
strategies and reached an AP of 13.29 % for ER25. It
must be stated that, in this scenario, the difference be-
tween confidence-based and count-based is less than for
the highway scenarios.

It must be stated that the overall AP is rather low
which can be traced back to the scenarios in which lots
of objects remain undetected due to occlusion. Moreover,
the AP is not only affected by the given scenario but
also the used sensor models (camera only) and algorithms
have a significant influence on the performance which
makes it difficult to compare the achieved results to other
publications.

5 Conclusion and Outlook
In this paper we examined four strategies for track main-
tenance in different scenarios and with varying equipment
rates of cooperative vehicles. A well performing track
management is crucial to enable safety in autonomous
driving. We have shown that the commonly used count-
based approach performs well but is outperformed by
the confidence-based approach by Benbarka et al. [8].
This strategy achieved the best results for all scenarios
and equipment rates. Using a consecutive count-based
approach showed a significant decrease in average pre-
cision and thus is not suitable for autonomous driv-
ing. A combined approach of the confidence-based and
count-based strategy shows results similar to the com-
mon count-based strategy but with a little improvement
in the crossing scenario. For further research combina-
tions of the confidence-based as well as the confidence
and count-based strategy with different cost metrics will
be evaluated. For a more comprehensive and meaning-
ful evaluation the safety metric by Volk et al. [17] will
be used to determine not only the performance but also
the safety of the different approaches. Using this metric
to determine which approach shows the best results and
should be used could increase the safety of an autonomous
vehicle. Furthermore, machine learning approaches con-
sidering the semantics of the scene will be examined as
track management strategy as using the semantics of the
scene could help to improve the performance and safety
in more complex scenarios. Moreover, higher rates of co-
operative vehicles and static tracking sensors with an im-
proved viewpoint on the scene are promising to improve
the tracking quality in complex scenarios.
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