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Abstract

In many applications involving scanpath analysis, especially when
dynamic scenes are viewed, consecutive fixations and saccades,
have to be identified and extracted from raw eye-tracking data in
an online fashion. Since probabilistic methods can adapt not only
to the individual viewing behavior, but also to changes in the scene,
they are best suited for such tasks.

In this paper we analyze the applicability of two types of main-
stream probabilistic models to the identification of fixations and
saccades in dynamic scenes: (1) Hidden Markov Models and (2)
Bayesian Online Mixture Models. We analyze and compare the
classification performance of the models on eye-tracking data col-
lected during real-world driving experiments.

CR Categories: 1.5.1 [Computing Methodologies]: Pattern
Recognition—Models; 1.6.4 [Computing Methodologies]: Simula-
tion and Modeling—Model Validation and Analysis J.7 [Computer
Applications]: Computers in Other Systems—Real time

Keywords: probabilistic, models, eye movements, online, classi-
fication, eye tracking, dynamic scene

1 Introduction

Visual perception involves six types of eye movements [Leigh and
Zee 2006], among which fixations and saccades are the most stud-
ied. During a fixation, the eye is kept relatively stable on an area
of interest (AOI), whereas saccades are fast eye movements en-
abling the fovea to fixate different areas of the scene [Privitera and
Stark 2005]. Thus, the process of looking at a scene can be repre-
sented by a sequence of fixations and saccades, the so-called visual
scanpath. Research on scanpath analysis and visual perception has
largely benefited from the recent development of eye trackers. To-
day’s eye-tracking systems allow a precise recording of eye move-
ments at high sampling rates, thus enabling a detailed analysis of
the viewing behavior.

While the detection of fixations and saccades in eye-tracking data
that is aligned with information from the visual scene is reliably fea-
sible by us humans, reliable automated clustering of eye movements
is still challenging; even more so in dynamic scenarios. In many
applications, e.g., human-computer gaze-based interaction, driving
assistance systems, online adaptation of digital content based on
gaze analysis, etc., the identification of fixations and saccades has
to occur in an online fashion. There is a wide variety of methods for
the online analysis of eye-tracking data and the recognition of fixa-
tions and saccades. However, only few of them are suited for online
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applicability to dynamic scenes. Obviously such methods have to
quickly adapt not only to the individual viewing behavior but also
to the changes occurring in the viewing scene. This small group of
highly promising methods is based on probabilistic formalizations,
e.g., as Markov Models [Salvucci and Goldberg 2000; Komogort-
sev et al. 2010; Sauter et al. 1991], Bayesian Mixture Models [Tafaj
et al. 2012; Tafaj et al. 2013a], etc.

In this paper we first discuss some of the most advanced methods
for the recognition of fixations and saccades from raw eye-tracking
data and highlight the main advantages of probabilistic methods
over other state-of-the-art methods. Then we take a closer look at
two of the most generic probabilistic methods proposed in literature
and empirically evaluate their online performance on hand-labeled,
real-world data collected from driving experiments.

2 State of the art methods for the detection
of fixations and saccades

Prior techniques for the automated recognition of different types
of eye movements from eye-tracking data fall into two main cate-
gories: (i) threshold-based methods, where the distinction of fixa-
tions from saccades is based on dispersion, velocity, or acceleration
thresholds, and (ii) probabilistic methods. These groups of methods
will be briefly discussed in the following.

2.1 Threshold-based methods

Algorithms from this group distinguish between fixations and sac-
cades based on the assumption that the distances, velocities, or
accelerations occurring between subsequent fixations differ from
those occurring between saccades. The goal then is to identify a
threshold based on which saccades can be reliably distinguished
from fixations.

When distance thresholds are used, fixation clusters are usually
identified by searching for data points that are close enough to each
other (i.e., below the established threshold) within a predefined time
window [Holmqvist et al. 2011]. A representative of this group, is
the Dispersion Threshold Identification (I-DT) algorithm [Salvucci
and Goldberg 2000]. Other similar approaches differ mainly in the
way the threshold is calculated [Blignaut 2009; Salvucci and Gold-
berg 2000; Shic et al. 2008].

Other algorithms in this realm are based on the computation of Min-
imum Spanning Trees (MST). In [Salvucci and Goldberg 2000] an
MST is built on the eye-tracking points within a temporal window
of predefined length. An edge (i.e., representing the distance be-
tween two points) is classified as a saccade if its length is signif-
icantly larger than the lengths of neighboring edges, which have
been previously classified as distances between fixations. Yet other
methods employ smart clustering algorithms, e.g., [Santella and
DeCarlo 2004; Urruty et al. 2007], but have serious limitations
with respect to their applicability to dynamic online scenarios, since
in such scenarios the cluster properties for fixations and saccades
show high variability.

Methods that are based on velocity or acceleration thresholds work



similarly. A representative of this group is the Velocity-Threshold
Identification (I-VT) algorithm, where a point is identified as a sac-
cade point, if the implicit velocity along the distance from the pre-
vious data point to that point exceeds a predefined threshold. Oth-
erwise the data point is assigned to a fixation cluster [Salvucci and
Goldberg 2000].

Due to their simplicity, threshold-based algorithms have been im-
plemented in several academic and commercial tools, e.g., Tobii',
faceLab?, SMI eGaze®, Gazetracker*, GazeAlyze [Berger et al.
2011], etc. Several recommendations for task specific settings
of dispersion, velocity, or acceleration thresholds have also been
made [Holmgqvist et al. 2011], mostly considering eye-tracking data
from viewing static images. Furthermore, in most cases, the above
analysis software tools provide only offline analysis of eye move-
ments.

In summary, the major drawback of threshold-based methods is that
they rely on thresholds that have to be empirically adjusted to the
individual viewing behavior, the viewing area, and the specific task.
Each of these parameters can have significant influence on the clas-
sification result [Komogortsev et al. 2010; Komogortsev and Kar-
pov 2013; Salvucci and Goldberg 2000]. For this reason and be-
cause of the fact that the viewing behavior is strongly physically-
and physiologically-dependent, such methods are not reliable, es-
pecially when real-time analysis of eye-tracking data is needed.

2.2 Probabilistic methods

These methods build on soft decision rules, which are formalized
as probabilities, e.g., the probability of a data point being a saccade
given the previous observations. The probabilities — and thus the
decisions — are adjusted to the observations.

HMM One of the most prominent probabilistic methods applied to
the identification of fixations and saccades is the Hidden Markov
Model (HMM). An HMM is a simple dynamic Bayesian network
with variables representing values from a discrete state and obser-
vation space. The state of a variable represents the class of the
current observation and is only dependent on the state (i.e., class of
the previous observation). Because of this sequential nature, such
models are a popular choice for the analysis of successively arising
data points (i.e., observations). For the detection of fixations and
saccades from eye data, HMMs have been used with velocity ob-
servations between successive data points, thus allowing the adap-
tation of the model to the physiological viewing behavior [Salvucci
and Goldberg 2000]. In the model of [Salvucci and Goldberg 2000]
(coined I-HMM), the two states used represent discretized veloc-
ity distributions over fixations and saccades. Transition probabili-
ties between the states represent the probability of the current sam-
ple belonging to a fixation cluster or a saccade, given the previous
state [Holmgqvist et al. 2011]. Due to the above probabilistic rep-
resentation, no thresholds are needed. The [-HMM is reported to
outperform fixed-threshold methods, such as I-VT [Salvucci and
Goldberg 2000]. In summary, the sequential, dynamic, and prob-
abilistic nature of HMMs makes them an adequate choice for data
arising in an online fashion and containing variability in its features.

Other similar approaches use more complex Markov models but
have the same properties, e.g., Kalman Filters [Komogortsev et al.
2010; Sauter et al. 1991].

BMM Probabilistic mixture models, such as the Bayesian Mixture
Model (BMM) presented in [Tafaj et al. 2012], build on the assump-
tion that the observed data is generated from mixture of unknown
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density distributions. The goal is to estimate the parameters of these
distributions based on observed data points and to derive the most
probable distribution that might have generated a given data point.

The algorithm presented in [Tafaj et al. 2012] could distinguish be-
tween fixations and saccades in an online fashion, only by consid-
ering the Euclidean distances between subsequent data points. The
underlying model is based on the assumption that distances between
subsequent fixation points will in general be shorter than distances
between subsequent saccade points; that is, distances between sub-
sequent fixation points would be generated from a specific Gaussian
distribution and those between subsequent saccade points from an-
other. This intuition was modeled by a Bayesian Online Mixture
Model. The benefit of the Bayesian formalization of the mixture
model is that the parameters of the two distributions are updated
and learned in an online fashion as more and more data is observed.
For every new data point, the prior probabilities are replaced by the
new estimates. For practical purposes this means that for every new
user the algorithm needs a relatively small number of data points to
adjust to that user and learn user- or scene-dependent parameters.

In summary, probabilistic methods come with three main advan-
tages over threshold-based ones:

1. No fixed thresholds are needed, instead the parameters of the
model (e.g., state transition probabilities, label emission prob-
abilities and other parameters) are learned from labeled data.

Both HMMs and BMMs can adapt to the individual (i.e.,
physiological) viewing behavior of a subject and to the spe-
cific task.

Given the dynamic nature of the underlying models, the meth-
ods are naturally suited for data arising in an online fashion,
such as eye-tracking data.

3 Experimental evaluation

In this section, we compare the -HMM with the BMM with respect
to their applicability to online scenarios, based on real-world, hand-
labeled eye-tracking data set collected from driving experiments.

3.1 Implementation

We implemented a two-state HMM according to the description of
the [-HMM in [Salvucci and Goldberg 2000]. However, the ob-
served sequences for the -HMM were velocities between the eye-
tracking data points, whereas in the HMM version that we have
implemented, the sequences consist of distances between succes-
sive data points. Based on training data (i.e., manually labeled data
points) such distance observations can be mapped to a discrete set
of observations, which in our context correspond to the IDs of two
Gaussian distributions, i.e., one distribution of distances between
saccades and a distribution of distances between fixations. These
distributions, the emission probabilities of their IDs, as well as the
transition probabilities between the HMM states are learned from
labeled data, by computing the corresponding maximum likelihood
estimations. As with the I-HMM [Salvucci and Goldberg 2000],
the two states of the HMM represent a distribution over fixations
and saccades. A Viterbi-based, forward-backward algorithm [For-
ney Jr. 1973] was implemented to compute the most probable state
sequence of the HMM for a given observation sequence.

The BMM was implemented as a Bayesian mixture of two Gaus-
sian distributions, one representing distances between consecutive
saccades and another one representing distances between consec-
utive fixations, as described in [Tafaj et al. 2012; Kasneci 2013].
We used Infer.NET® to implement the Bayesian model and varia-
tional message passing to perform the inference, i.e., finding the

Shttp://research.microsoft.com/en-us/um/cambridge/projects/infernet/



most likely distribution to have generated the observed data points.
The source code is also available online®.

Both models were applied post-experimentally, but in real-time on
sequentially arising raw eye-tracking data points from nine different
data sets that will be described in the following subsection.

3.2 Data sets

To evaluate the performance of the HMM and BMM, we employed
nine real-world, eye-tracking data sets from nine different subjects
who took part in our driving experiments [Kasneci et al. 2014].
Each data set consisted of 750 data points recorded while driving, at
a sampling rate of 25Hz by a mobile Dikablis eye tracker. The data
was analyzed frame-wise by two PhD students. An eye-tracking
data point was thereby labeled as belonging to a saccade or fixation
only if both of the judges agreed. Blinks and disagreements were
excluded from the data. Note that this annotation task is very la-
borious, as the eye-tracking data has to be labeled manually with
respect to the information on the scene. Note that each of the data
sets corresponds to a driving sequence of 30 seconds, resulting in a
total of 4.5 minutes.

This annotation process led to the data sets presented in Table 1.

Training data Test data
Data set Saccade | Fixation | Saccade | Fixation
Data set 1 33 267 50 398
Data set 2 41 259 51 166
Data set 3 29 271 89 359
Data set 4 41 259 94 258
Data set 5 28 272 53 393
Data set 6 88 212 88 284
Data set 7 67 233 74 366
Data set 8 8 292 9 321
Data set 9 17 283 50 364

Table 1: Hand-labeled data sets from driving sessions of nine sub-
Jjects. The first 300 data points in each data set were employed for
training, the remaining ones for testing the models.

Both HMM and BMM were trained on the first 300 eye-tracking
points of the above data sets. The HMM derives from the training
data the distance distributions (i.e., for distances between consec-
utive saccades and consecutive fixations) as well as transition and
emission probabilities. In contrast, the BMM, updates the learned
parameters in an online fashion as new data points are observed.
Once the parameters were learned for both models, their prediction
quality was tested on each data set.

3.3 Evaluation results

Tables 2 and 3 show a detailed analysis of the quality of both
algorithms with respect to the detection of saccades and fixa-
tions, respectively. Both tables show quality results in terms of
the following measures: Precision (%), Recall (T;_%),

Fl-measure (%), which represents the harmonic

mean of precision and recall, and Miss-Classification-Rate (MCR)
FP+FN

(TPrFPiTNTFN)-

As shown in Table 2, the BMM clearly outperformed the HMM

with respect to the detection of saccades, which, in this context, is

Ohttps://www.ti.uni-tuebingen.de/Analysis-of-Eye-Tracking-
Data.eyetracking.0.html
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the more critical class, since a correct detection of saccades implies
a correct separation of fixation clusters. Note that in general the
proportion of saccade points is much smaller than that of fixation
points. For a model such as the HMM, which aims at maximizing
the joint probability of a sequence of states and corresponding ob-
servations, it is safer to focus on the most probable states and obser-
vations; these are fixations and the corresponding distance means.
These findings are also in line with the findings presented in [Ko-
mogortsev et al. 2010].

In contrast, for the detection of saccades, the BMM achieved an
astounding precision between 97% and 100%, Table 2. For most
of the data sets it also showed higher recall values than the HMM.
This implies that, most of the time, successive fixation clusters are
correctly separated by the BMM.

Model [ Precision | Recall | F1 | MCR |
Dataset1 | EMM | 0667 [ 0960 | 0.787 | 0.058
BMM | 1.000 | 0926 [ 0.962 [ 0.009
Datasets | BMM | 0800 [ 0941 | 0.865 | 0.069
BMM | 1.000 [ 0927 [ 0.962 | 0.018
Dataset3 | BMM | 0742 [ 0857 | 0.795 | 0.076
BMM | 1.000 [ 0937 [ 0.967 | 0.013
HMM | 0737 | 0.926 | 0.821 [ 0.108
Data set 4
BMM | 1.000 [ 0.979 [ 0.989 [ 0.006
Datasets | HMM | 0943 [ 0758 | 0.840 | 0.043
BMM | 1.000 | 0964 [ 0.981 [ 0.004
Dataset6 | EMM | 0625 [ 0859 | 0724 | 0.113
BMM | 1.000 [ 0957 [ 0.978 | 0.011
Dataset7 | EMM | 0757 [ 0949 | 0.842 | 0.048
BMM | 1.000 [ 0902 [ 0.949 | 0.018
Datasets | HMM | 1000 [ 0375 | 0545 | 0015
BMM | 1.000 [ 1.000 [ 1.000 [ 0.000
Dataseto | AMM | 0698 | 0.600 | 0.645 | 0.080
BMM | 0971 [ 1.000 | 0.985 | 0.003

Table 2: Quality comparison of the HUM and the BMM for the
class of saccade points.

Indeed, a much better performance of the HMM is shown in Ta-
ble 3, where the precision with respect to the detection of fixations
varies between 96% and 99%. The precision achieved by the BMM
is also very high, varying between 97% and 100%. However, the
recall of the HMM with respect to the detection of fixation points
is remarkably lower than that of the BMM, because the HMM does
not manage to adapt well enough to varying distances between fixa-
tion points. This is different for the BMM, which can adapt to vary-
ing distances in an online fashion. Considering the MCR, which is
very low for both models, we found a superior performance of the
BMM with values smaller than 2%. In summary, the HMM was
outperformed by the BMM with respect to all measures.

These results highlight the superior performance of the online
Bayesian mixture model in comparison to a HMM. Especially, on
the difficult task of reliably detecting saccades, which is crucial
for the correct separation of fixation clusters, the Bayesian model
achieves highly satisfiable precision, and recall values.

Beyond the context of dynamic scenarios, the BMM can be inte-
grated into vision research tools (e.g., Vishnoo [Tafaj et al. 2011]) to
analyze the viewing behavior during visual search tasks presented
on a screen. Furthermore, the BMM can be used in the context
of medical testing, e.g., for advanced visual field testing involving
online analysis of fixations (e.g., EFOV [Tafaj et al. 2013b]). In



summary, whenever fixations and saccades have to be detected in
an online fashion, the BMM is a highly reliable choice.

Model | Precision | Recall | F1 | MCR |
Dataset1 | EMM | 0995 [ 0940 | 0.966 | 0.058
BMM | 0.990 [ 1.000 | 0.995 | 0.009
Datasets | BMM | 0981 [ 0928 | 0.954 | 0.069
BMM | 0976 [ 1.000 | 0.988 | 0.018
Dataset3 | EMM | 0969 [ 0938 | 0.953 | 0.076
BMM | 0983 [ 1.000 | 0.992 | 0.013
HMM [ 0970 | 0.880 | 0.923 [ 0.108
Data set 4
BMM | 0992 | 1.000 | 0.996 | 0.006
Datasets | EMM | 0959 [ 0992 | 0975 | 0.043
BMM | 0995 | 1.000 | 0.997 [ 0.004
Dataset6 | EMM | 0968 | 0893 | 0929 | 0.113
BMM | 0986 | 1.000 [ 0.993 | 0.011
Dataset7 | EMM | 0992 [ 0953 | 0972 | 0.048
BMM | 0978 [ 1.000 [ 0.989 | 0.018
Datasets | EMM | 0985 [ 1.000 | 0992 | 0015
BMM | 1.000 [ 1.000 [ 1.000 | 0.000
Dataseto | BMM | 0946 | 0.964 | 0955 | 0.080
BMM | 1.000 [ 0997 [ 0.998 | 0.003

Table 3: Quality comparison of the HUM and the BMM for the
class of fixation points.

4 Conclusion

In this paper, we have discussed viable approaches to the chal-
lenging task of online detection of saccades and fixations in eye-
tracking data from dynamic scenes. While it is known that prob-
abilistic methods are more adequate than threshold-based ones for
these kinds of tasks, we showed that, when applied to online and
dynamic data, there may be considerable performance differences
between probabilistic methods. The experimental evaluation on
raw eye-tracking data, collected from on-road and simulated driv-
ing sessions has demonstrated a superior classification performance
of the Bayesian Mixture Model over the Hidden Markov Model.
The main reason for the better performance of the Bayesian Mix-
ture Model is its flexibility with respect to the continuous update of
the parameters and thus its ability to adapt to the viewing behavior
and changes in the scene.
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