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Abstract

Magnetoencephalography (MEG) is a rarely used technique for BCI, which benefits are
good signal quality and high spatial resolution. The latter can be seen as a drawback, when
it comes to selecting the most important features or sensors. To increase accuracy and reduce
classification time feature selection is an important step in signal classification. Due to the
large amount of MEG sensors (> 275 possible) feature selection is very time consuming, which
is why we present a fast feature selection method for high-dimensional data. It gives similar
results as established feature selection methods and we show that its time-complexity grows
linearly with the number of samples and is O(nlogn) for the number of features.

1 Introduction

A Brain-Computer Interface (BCI) enables a user to communicate or control a computer by brain
activity only. Brain activity can be measured by different methods like EEG or MEG. Using MEG
has the benefit of recording from more sensors, which also results in having more dimensions in
the feature space. Depending on the method of feature extraction being used, there can be an
additional growth of features. Considering a MEG with n = 275 channels a spectral estimation by
an autoregressive model in the range of 7-21 Hz in 2 Hz bins would result in n -7 = 1925 features.
Using connectivity measures like coherence or phase synchronisation [1] results in % = 37675
features. When dealing with such an amount of features it is important to have a method for
feature selection, which reduces the full set of features to a small set including only the features that
are most important for classification [2]. Another demand results from the limited computation
power and time available. In most BCI experiments data is recorded in a first session and used
for training a classifier, which is tested in an online-session some minutes later. In this case we
need a fast feature selection method that can deal with a large number of features very quickly.

2 Methods

2.1 Data

For analysis and comparison of different feature selection methods we used the dataset from [3].
It consists of MEG data measured from 10 subjects. Each subject participated in 2 sessions and
performed 7 different imagination tasks without feedback (51 trials per task and session). Since it
was shown in [3] that imagined right hand movement and subtraction were the two best tasks to
classify, we focused on data from these two tasks for evaluation. For feature extraction we used
spectral coherence [1] resulting in 37675 features for all 275 channels.
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2.2 r? Ranking

In a BCI context r? values are often used for performance estimation [4]. They can be seen as
measure of correlation between a feature and the class membership. In other words: they give the
proportion of variance for a feature, that is explained by the class membership.

Assume our data consists of n trials z;,¢ = 1,...,n with each trial having m features f;;,j =
1,...,m and a class label y; € {1,—1}. If n; trials are in class 1 and n_; trials are in class —1, the
r? value for feature j is calculated by:
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The result is a value between 0 and 1 where 0 stands for no correlation and 1 for perfect correlation
(although perfect class seperability can be reached with r2(j) < 1). When using r? values for
feature selection, the 72 values for all features are calculated, sorted in descending order and the
features with the highest r2 values are chosen for classification.

2.2.1 Incremental, Decremental Update of > Values

R? values allow the possibility for incremental or decremental update. Having calculated the r2
values for n samples, the solution for n + 1 or n — 1 samples can be calculated in constant time.
By keeping in memory the following 6 intermediate results (3, , _. fij)* , >, . —. fi; and nc
for ¢ € {1,—1} each incremental and decremental step can be calculated in constant time (20
numerical operations) by updating these intermediate results. Therefore the time complexity for
calculating r? values grows linearly with the number of samples. Since the r? value for one feature
is independent from all other features, each 72 value can be calculated separately and the time
complexity is also linear in respect to the number of features. Due to the ranking, where the r2
values are sorted in descending order, the total time complexity for 72-ranking is O(nlogn).

The possibility of incremental and decremental update can be used for faster implementation
of feature selection in cross-validations (CVs) or leave-one-out estimations (LOOEs). To ensure
valid results a feature selection has to be performed on every training set each fold, which means
performing n feature selections on a n-fold CV. By using decremental update it is possible to
calculate the r? values with all trials only once and store the intermediate results in memory. In
each fold the decremental update is used to remove the test trials from the full solution. The result
is the same as the 2 values would be calculated from the training set, but especially for LOOEs
this is a big speedup, since the feature selection only needs to be done once and the results for
each fold only need to be updated decrementally.

2.3 Performance Evaluation

To evaluate performance of r2-ranking we tested some other feature selection methods: Recursive
Feature Elimination (RFE) [5], Particle Swarm Optimization (PSO) [6], Principal Component
Analysis (PCA) and Fast Correlation-Based Filter (FCBF) [7].

RFE is an iterative method that can be used with a Support Vector Machine (SVM). In each
iteration a SVM is trained, a ranking criterion (feature weights in the linear case) is calculated and
the feature with the smallest ranking criterion is removed. The RFE continues until the designated
number of features is reached. To speed up the process we also used a modified version of the
RFE in this paper (called mRFE later), which removes the 25 features with the lowest ranking
criterion if the current number of features is greater than the designated number of features plus
100. After that only one feature is removed each iteration.

To compare computation time we used an Intel Dual Core E2180 at 2 GHz with 4 GB RAM
running 64-bit Linux and 64-bit Matlab. Apart from LibSVM [8] only Matlab functions were used.
We tested different numbers of starting features ranging from 250 to 37675 and selected the 100
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Figure 1: Averaged computation time to select the 100 best features for r2-ranking, FCBF, mRFE,
RFE, PCA and PSO with 204 trials. PCA could not be tested with more than 17350 features
because the machine that was used for evaluation ran out of memory.

optimal number of features 100 features

method # features accuracy time accuracy time
no feature selection 16110 80.2% - - -
FCBF 73 83.9% 127 s - -
RFE 550 87.6 % 6986 s 83.9% 7019 s
mRFE 550 87.5% 608 s 84.4% 261 s
r2-ranking 330 86.5 % 0.79 s 83.8% 0.79 s
PCA 50 83.1% 146 s 78.5% 146 s
PSO 9565 83.1% 35758 s || - -

Table 1: Comparison of different feature selection methods: number of features, accuracy and
computation time needed for feature selection.

best features. For each method and each number of features we performed 10 runs with 204 trials
and averaged the computation time.

To compare classification accuracies we used the first session of the data for feature selection
and training and the second session to test the classifier. For classification we used LibSVM with
a RBF-kernel. To test accuracy we excluded the outer MEG-sensors from the data, since they
are supposed to have very little class related information but instead being more contaminated by
artefacts than the inner sensors. This reduces the number of features to 16110.

3 Results

The results for computation time can be seen in Figure 1. It shows that r2-ranking is faster than
the other methods, especially for very high-dimensional data. Due to memory limitations it was
not possible to calculate PCA with more than 17350 features on our machine.

The classification accuracy, number of features and computation time averaged over 10 subjects
can be seen in Table 1 for the optimal number of features as well as a fixed number of 100 features.
Since FCBF and PSO do not reduce to a specified amount of features, there are no results with
100 features.

While PCA, RFE and r2-ranking show significantly better accuracy than without feature
selection (p < 0.01, paired t-test), FCBF and PSO are not significantly better (p > 0.1). In
addition there is no significant difference between r2-ranking and RFE (p > 0.25).

To test the benefit of the decremental update we performed a LOOE with 204 trials and 37675
features. While the r?-ranking without decremental update took 160.2 seconds, with decremental
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update it finished in 2.8 seconds. For comparison we also tried a 10-fold CV without decremental
update that took 9.5 seconds. All times reported here only relate to the computation time needed
for the feature selection, not for the whole LOOE or CV.

4 Discussion

The results show that r?-ranking is faster than the other tested methods. In terms of accuracy
there is no significant difference between r2-ranking and RFE, but r2-ranking yields significantly
better results than without feature selection, thus making it a viable option for feature selection
in high-dimensional data.

Another advantage of r2-ranking is the possibility for incremental and decremental updates.
Feature selection in CVs or LOOESs usually is the most time consuming step in the whole process.
While the decremental update has proven useful to further speedup CVs or LOOEs, the incremen-
tal update could be used for an online feature selection, that updates the feature ranking every
time a new trial is available without the need to know the previous trials. While PCA already
has shown memory problems, the same problem arises for RFE if the number of trials becomes
larger. Although the memory requirements for r2-ranking are lower in general, the possibility for
incremental update could help to further aid this problem.

5 Conclusion

We showed on high-dimensional data that r2-ranking is superior to other feature selection methods
concerning computation time. In terms of accuracy there is no significant difference to established
feature selection methods like RFE. The possibility of incremental and decremental update also
shows other interesting areas for application, like faster cross-validation or online feature selection.
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