
T
h
is
 a
rtic

le
 is
 p
ro
te
c
te
d
 b
y
 G
e
rm

a
n
 c
o
p
y
rig

h
t la

w
. Y

o
u
 m

a
y
 c
o
p
y
 a
n
d
 d
is
trib

u
te
 th

is
 a
rtic

le
 fo

r y
o
u
r p

e
rs
o
n
a
l u

s
e
 o
n
ly
. O

th
e
r u

s
e
 is
 o
n
ly
 a
llo

w
e
d
 w
ith

 w
ritte

n
 p
e
rm

is
s
io
n
 b
y
 th

e
 c
o
p
y
rig

h
t h

o
ld
e
r. 

it 3/2007

Schwerpunktthema ���

CRC – Concepts and Evaluation
of Processor-Like Reconfigurable
Architectures

CRC – Konzepte und Bewertung prozessorartig rekonfigurierbarer Architekturen

Tobias Oppold, Thomas Schweizer, Julio Oliveira Filho, Sven Eisenhardt,
Wolfgang Rosenstiel, University of Tübingen

Summary The CRC project focuses on the utilization of fast
reconfiguration to optimize area, performance, and power. The
results are quantified by a synthesizable architecture model
and by a commercial architecture. In order to assure good
applicability of the research, a C-compiler is co-developed
with the architecture. This article provides an overview of
the optimization techniques and a summary of current eval-
uation results. ��� Zusammenfassung Das CRC-Pro-
jekt beschäftigt sich mit der Nutzbarmachung schneller Re-

konfiguration, um Flächenbedarf, Ausführungsgeschwindigkeit
und Verlustleistung zu optimieren. Die Ergebnisse werden
anhand eines synthetisierbaren Architekturmodells und ei-
ner kommerziellen Architektur beurteilt. Um die entwickel-
ten Konzepte auch praktisch einsetzen zu können, wird ein
C-Compiler gemeinsam mit der Architektur entwickelt. Die-
ser Beitrag liefert einen Überblick über die Optimierungs-
techniken und eine Zusammenfassung aktueller Bewertungs-
ergebnisse.

KEYWORDS C.1 [Computer Systems Organization: Processor Architectures], C.3 [Computer Systems Organization: Special-
Purpose and Application-Based Systems], dynamic hardware reconfiguration, coarse grained reconfigurable ar-
chitectures, high-level compiler, voltage reconfiguration

1 Introduction
Reconfigurable systems provide the
ability to reuse architectural re-
sources over time. Typically, for stat-
ically reconfigurable architectures,
this reuse happens rarely. For ex-
ample, FPGAs are often used for
prototyping purposes so that the
reconfigurable fabric is reused in
the range of minutes or even much
longer. Reconfiguring such archi-
tectures at runtime of the sys-
tem is mostly done in academic
work trying to reuse the archi-
tecture, e. g., for various tasks of
an embedded system. Due to the
long reconfiguration times imposed
by transferring the configuration

data from outside the reconfigurable
fabric, finding a good partitioning
is highly application specific and
hardly supported by commercial
tools.

Newly developed architectures
can be reconfigured within one
clock cycle, allowing components
of a device to be reused within
a single application. We call such
architectures processor-like reconfig-
urable architectures. They usually
have a coarser granularity and re-
quire less configuration data than
traditional FPGAs so that multiple
configuration contexts can be stored
inside the reconfigurable array and
reconfiguration keeps pace with ex-

ecution. This yields an additional
degree of freedom, which we ex-
plore in a design environment that
takes advantage of reconfiguration
to optimize area, performance, and
power. The optimizations pertain to
architectural features and compiler
techniques since the benefits of re-
configurability can only be exploited
if applications can be mapped effi-
ciently.

In the CRC project, we de-
veloped a modifiable architecture
model (Configurable Reconfig-
urable Core, CRC) that can be
adapted to the requirements of
the compiler. Synthesizing instances
of the CRC model enables a de-

it – Information Technology 49 (2007) 3/ DOI 10.1524/itit.2007.49.3.157  Oldenbourg Wissenschaftsverlag 157



T
h
is
 a
rtic

le
 is
 p
ro
te
c
te
d
 b
y
 G
e
rm

a
n
 c
o
p
y
rig

h
t la

w
. Y

o
u
 m

a
y
 c
o
p
y
 a
n
d
 d
is
trib

u
te
 th

is
 a
rtic

le
 fo

r y
o
u
r p

e
rs
o
n
a
l u

s
e
 o
n
ly
. O

th
e
r u

s
e
 is
 o
n
ly
 a
llo

w
e
d
 w
ith

 w
ritte

n
 p
e
rm

is
s
io
n
 b
y
 th

e
 c
o
p
y
rig

h
t h

o
ld
e
r. 

Schwerpunktthema

tailed evaluation, which we cannot
accomplish with commercial archi-
tectures. On the other hand, using
the stable tool chain of commercial
architectures enables the evalua-
tion of complex applications more
efficiently. Since NEC’s DRP (Dy-
namically Reconfigurable Processor)
architecture [6] is very similar to the
CRC model with respect to runtime
reconfiguration [8], we can use the
silicon-proven DRP and its associ-
ated tools [12] to obtain additional
evaluation data.

In the next section, a short dis-
cussion of related work is presented.
The CRC model and NEC’s DRP
architecture are introduced in Sec-
tion 3. Our optimization approach
is presented in Section 4. Results
based on the CRC model and the
DRP are discussed in Section 5.
In Section 6, we present a new ap-
proach for fast voltage reconfigura-
tion.

2 Related Work
Early work on fast reconfiguration
has been carried out by DeHon [4]
and Trimberger et al. [13]. More
recently, a growing number of com-
mercial coarse grained architectures
appeared on the market, e. g., NEC-
DRP, PACT-XPP, IPFlex DAP/DNA,
Silicon Hive, Elixent D-Fabrix, and
MathStar FPOA, to name just a few.
Some of these architectures can be
reconfigured within one clock cycle.

Only for a minority of the ar-
chitectures, a C-compiler that au-
tomatically partitions an applica-
tion into several configurations is
available. For example, Mei et
al. [5] apply modulo scheduling to
map loops of C-descriptions onto
the ADRES architecture. NEC de-
veloped a C-compiler for the DRP
based on their hardware synthesis
tool Cyber [14].

3 CRC Model
The CRC model was developed to
represent a wide range of processor-
like reconfigurable architectures. In
its most general specification, only
a few features are defined. As de-
picted in Fig. 1, it consists of a rect-

Figure 1 General specification of the CRC
model.

angular array of processing elements
(PE) that are connected by a re-
configurable interconnect network.
Each PE consists of a functional unit
(FU) for word-wide arithmetic and
logic operations, a register set, and
a context memory that defines sev-
eral configurations for the PE. At the
beginning of each clock cycle, a con-
text is selected by a control unit that
can vary significantly for the various
architectures. Since the interconnect
network also varies, both are not
further specified in the general CRC
model.

Instances of the CRC model
are specified by refinement of the
general model. The instances are de-
scribed as a transaction-level model
in SystemC, and at the register-
transfer level in Verilog. We use
the SystemC implementations for
system-level evaluations not further
detailed in this article. The Sys-
temC implementations are also used
as target architectures by other re-
searchers in the priority program
introduced in the editorial of this
issue, e. g., by the group of Prof.
Merker [10]. The Verilog implemen-
tations are synthesized using com-
mercial tools, and they are simulated
and analyzed at the gate-level for de-
tailed evaluations as described in the
following sections.

NEC’s DRP architecture can also
be considered as instance of the
CRC model. Its basic functional-
ity complies with the refined CRC
model presented in the context
of our architecture optimizations
in Section 4.3 (Fig. 6). The DRP’s

Figure 2 A tile of the DRP architecture [6].

control unit (“state transition con-
troller”) is a sequencer that controls
an array of 8 × 8 PEs, called a “tile”
(Fig. 2). A DRP “core” is composed
of one or more of such DRP tiles.
The DRP-1 prototype core consists
of 8 tiles, i. e., 512 PEs in total. The
front-end of the DRP-compiler [12]
is a special version of Cyber [14]. It
maps the data path extracted from
C-descriptions to multiple contexts
and generates the code for the con-
trol unit.

4 Optimizations
The co-development of architecture
and compiler provides a high de-
gree of freedom for optimizations
often neglected by architecture and
compiler developers. However, it
also constitutes a special challenge
in addition to the partly conflicting
optimization goals (Fig. 3). In the
remainder of this section, our ap-
proach to address this complex of
problems is described.

4.1 Optimization Goals
In order to restrict the enormous
optimization space indicated by
Fig. 3 reasonably, we use the ap-
proach depicted in Fig. 4. First,
a performance constraint is set in
terms of the throughput rate for
a single streaming application or
loop kernel. It is specified by the ini-
tiation interval, i. e., the number of
clock cycles that are available to con-
sume a set of input values, and the
clock frequency. The acronym II is
used in the following to denote the
initiation interval.

158



T
h
is
 a
rtic

le
 is
 p
ro
te
c
te
d
 b
y
 G
e
rm

a
n
 c
o
p
y
rig

h
t la

w
. Y

o
u
 m

a
y
 c
o
p
y
 a
n
d
 d
is
trib

u
te
 th

is
 a
rtic

le
 fo

r y
o
u
r p

e
rs
o
n
a
l u

s
e
 o
n
ly
. O

th
e
r u

s
e
 is
 o
n
ly
 a
llo

w
e
d
 w
ith

 w
ritte

n
 p
e
rm

is
s
io
n
 b
y
 th

e
 c
o
p
y
rig

h
t h

o
ld
e
r. 

Concepts and Evaluation of Processor-Like Reconfigurable Architectures���

Figure 3 Goals for the co-development of architecture and compiler.

Figure 4 Optimization approach.

Second, the number of required
FUs is minimized by the compiler
as described in Section 4.2. Third,
based on the results of this mini-
mization, an instance of the CRC
model with minimal resource re-
quirements is defined as described
by the architecture optimizations in
Section 4.3.

By comparing the optimized ar-
chitecture to instances of the CRC

Figure 5 a) DFG of an 8-
point FFT. b) Mapping for
II= 2 and II= 4. Overlapping
operations can be executed
by a single FU in different
contexts [3].

model with features related to pro-
cessor-like reconfiguration (e. g. the
number of contexts) being added
or removed, the costs and ben-
efits of processor-like reconfigu-
ration are quantified. The results
also provide the basis for defin-
ing architectures that are opti-
mized for a number of applica-
tions rather than a single applica-
tion [7].

4.2 Compiler Optimizations
The first step in the compiler is
generating a combined control and
data flow graph (CDFG) from a C-
description of the application. The
edges of the CFG represent branches
in the control flow and its nodes
contain the DFGs. The operations
of the DFGs are scheduled for ex-
ecution so that the number of
FUs is minimized while meeting
the II constraint. The correspond-
ing techniques are discussed below.
Further steps in the compiler in-
clude the binding of operations
to FUs of the target architecture
(placement) and the binding of the
connections between the operations
to components of the interconnect
network (routing). In cooperation
with the research group of Prof.
Fekete (priority program project
ReCoNodes), techniques for simul-
taneous scheduling, placement, and
routing are developed on the basis
of integer linear programming [2].

4.2.1 Implementing Data Flow
To demonstrate the techniques we
apply to implement a single DFG
being executed in a loop, the Coo-
ley-Tukey algorithm for fast Fourier
transform (FFT) is used in the fol-
lowing. Fig. 5a shows the DFG of an
8-point FFT. It is assumed that each
of the operations (1–36 in Fig. 5)
can be executed by a single FU.

159



T
h
is
 a
rtic

le
 is
 p
ro
te
c
te
d
 b
y
 G
e
rm

a
n
 c
o
p
y
rig

h
t la

w
. Y

o
u
 m

a
y
 c
o
p
y
 a
n
d
 d
is
trib

u
te
 th

is
 a
rtic

le
 fo

r y
o
u
r p

e
rs
o
n
a
l u

s
e
 o
n
ly
. O

th
e
r u

s
e
 is
 o
n
ly
 a
llo

w
e
d
 w
ith

 w
ritte

n
 p
e
rm

is
s
io
n
 b
y
 th

e
 c
o
p
y
rig

h
t h

o
ld
e
r. 

Schwerpunktthema

To achieve maximum through-
put, i. e., II= 1 at the highest pos-
sible clock speed, the execution
must be pipelined by inserting reg-
isters between sequential operations
of the DFG. Processor-like recon-
figuration is not applicable in this
case. However, if only a part of the
input vector is provided by the sur-
rounding system in each clock cycle
(II > 1), the FUs can be reused in the
various clock cycles within differ-
ent contexts as indicated in Fig. 5b.
To meet the II constraints (II= 2
and II= 4, again at the highest pos-
sible clock speed), the multi-context
execution must be combined with
pipelining. The resulting multi-con-
text pipelined execution is demon-
strated for II= 2: in clock cycle 2 · n,
operations 1 and 2 work on their
parts of input vector n. At the same
time, operations 5–8 work on input
vector n – 1, operations 13 and 14
on input vector n – 2, etc. One clock
cycle later, operations 3 and 4 work
on their parts of input vector n and
operations 9–12 work on input vec-
tor n – 1, etc.

As seen in Fig. 5, the number
of FUs can be reduced significantly
when the II is increased. In addition
to this, processor-like reconfigura-
tion allows to utilize reconfiguration
as a third dimension for routing by
redirecting communication through
the time domain. By doing so, the
number of interconnections, as well
as their lengths, can be reduced.
For deep sub-micron technologies,
the interconnect delay contributes
significantly to the overall delay
of digital circuits. In addition to
the metal wire delays, the reconfig-
urable routing switches contribute
to the interconnect delay of recon-
figurable architectures. Therefore,
an increased clock speed compared
to a statically reconfigurable archi-
tecture can be expected for the
FFT example if the II constraint is
above 1.

Another way to increase the
clock speed is inserting additional
registers between operations to
pipeline communication over the
interconnect network. However, as

seen in Fig. 5a, pipelining the oper-
ations of the FFT example already
requires more registers than FUs
to keep the pipeline synchronized
(e. g., two registers must be in-
serted between operations 5 and
17), and our experiments target-
ing NEC’s DRP architecture were
actually limited by registers rather
than by FUs. Moreover, for appli-
cations with a feedback loop in the
DFG, e. g., if the output of op-
eration 17 were connected to the
input of operation 5, pipelining
the feedback loop usually decreases
the throughput [1]. Therefore, we
rather combine chaining of oper-
ations with pipelining and multi-
context execution.

4.2.2 Implementing Control Flow
Branches in the control flow can
be resolved by spatially multiplexing
the data path. This transforms the
control flow graph of an application
into a pure data flow graph that can
be further processed as described
in Section 4.2.1. This approach is
commonly used for reconfigurable
architectures.

Alternatively, the branches can
be assigned to different contexts,
i. e., they are temporally multi-
plexed, to minimize the number of
required FUs without impact on
the performance since only one of
the branches is actually needed at
a time during execution. We call
this technique multi-context control
flow branches, which corresponds to
the conditional jump instructions of
von Neumann architectures.

As an extension of the previous
technique, we use pipelined multi-
context control flow branches.
Using this technique, a pipeline
stage may change its state and con-
text depending on the results of
a previous stage. If the target ar-
chitecture features only one control
unit for all PEs, an excessive number
of states can be required to ensure
a sustained throughput rate for all
combinations of branches in the
application. If there is a dedicated
control unit for each pipeline stage,
the number of states and contexts is

minimal, since the possible combi-
nations do not have to be considered
at compile time.

4.3 Architecture Optimizations
The scheduling of operations as
described in the previous section
determines the execution of the
application at the register-transfer
(RT) level for the given II constraint.
The ability to execute the appli-
cation accordingly depends on the
features of the target architecture. At
this level of abstraction we therefore
refer to the execution as an execu-
tion scheme [8] and define instances
of the CRC model that enable the
implementation of an application’s
execution scheme. The goal of the
architecture optimizations is to find
an instance that supports the execu-
tion scheme using a minimal num-
ber of resources.

Based on the execution schemes
of several applications, we have re-
fined the CRC model as depicted
in Fig. 6. The interconnect network
is subdivided into word-wide data
channels (8, 16, or 32 bit) and 1-
bit status signals not further detailed
at this level of refinement. For the
FU and the registers, the word-wide
data flow is also separated from the
1-bit signals. The output of the FU
can be stored in a register and fed
into the interconnect network to ex-
ecute two or more operations in
a chain of FUs. For the control unit,
the refined model merely specifies
that it implements a finite state ma-
chine (FSM) controlled by the 1-bit
status signals and that an entry of
the context memory is selected by
the FSM at the beginning of each
clock cycle.

The requirements for the con-
trol unit and the interconnect net-
work can vary significantly for dif-
ferent applications. Our ongoing
research focuses on optimizing these
features for a wide range of applica-
tions.

For the evaluations in this article
we used a parameterizable architec-
ture template based on the refined
CRC model that features a lookup-
table-based control unit in each

160



T
h
is
 a
rtic

le
 is
 p
ro
te
c
te
d
 b
y
 G
e
rm

a
n
 c
o
p
y
rig

h
t la

w
. Y

o
u
 m

a
y
 c
o
p
y
 a
n
d
 d
is
trib

u
te
 th

is
 a
rtic

le
 fo

r y
o
u
r p

e
rs
o
n
a
l u

s
e
 o
n
ly
. O

th
e
r u

s
e
 is
 o
n
ly
 a
llo

w
e
d
 w
ith

 w
ritte

n
 p
e
rm

is
s
io
n
 b
y
 th

e
 c
o
p
y
rig

h
t h

o
ld
e
r. 

Concepts and Evaluation of Processor-Like Reconfigurable Architectures���

Figure 6 Refined CRC model.

PE and implements a nearest-neigh-
bor (NN) interconnect network. By
implementing these features within
a single PE, arrays of arbitrary size
can be created easily. The NN-net-
work allows routing data between
neighboring PEs independently of
FU operation. For the applications
we have analyzed so far, a NN-net-
work with one status and two data
channels that may buffer data in-
dependently of the register sets has
turned out to yield a good FU to
PE ratio. We denote this template as
CRC-A since it is the first of a set of
architecture templates implemented
in Verilog.

For the CRC-A template we
have implemented a number of RT-
level components (FUs with and
without multiplier, NN-networks
with one or two data channels,
etc.) that can be combined in
various ways so that different ar-
chitecture instances can be syn-
thesized and analyzed in a highly
automated flow with reasonable
effort. To create architecture in-
stances, in particular instances op-
timized for an execution scheme,
the CRC-A template is configured
by selecting RT-level components
and setting parameters of the Ver-
ilog code (e. g., the word length
and the number of contexts). In-
stances of the CRC model opti-
mized for execution schemes that
require no reconfiguration, i. e.,
statically reconfigurable architec-
tures, are created by omitting the

context memory and the control
unit.

5 Evaluation
To quantify the costs and benefits of
processor-like reconfiguration, area,
performance, and power results for
data flow applications are presented
in the following. Details on control
flow branches as well as the appli-
cability of our execution schemes
to NEC’s DRP architecture are pre-
sented in [8].

5.1 Area
To quantify the area trade-off im-
plied by processor-like reconfigu-
ration, a simplified version of the
8-point FFT described in the pre-
vious section is discussed. While

Figure 7 Area vs. performance trade-off for the simplified 8-point FFT and a 120 MHz clock con-
straint.

the Cooley-Tukey algorithm actually
requires complex arithmetic, this
simplified FFT uses integer arith-
metic so that each operation of
the DFG can be mapped to an
FU of the CRC-A template that
supports all operators of the C
language except for division and
modulo.

Fig. 7 shows area estimations for
different instances of the CRC-A
template targeting a 130 nm stan-
dard cell library. According to our
optimization approach, a statically
reconfigurable instance with 36 PEs
represents the optimal architecture
for II= 1 (routing is neglected for
this area evaluation). Its area is ob-
servably smaller than that of proces-
sor-like reconfigurable architectures
that also require 36 PEs to meet the
II constraint.

For II= 2, the static architecture
still requires 36 PEs while a pro-
cessor-like reconfigurable instance
requires only 20 PEs. Even if the
number of contexts is doubled com-
pared to the optimized architecture,
the resulting area is smaller than
that of the static architecture.

Likewise, an instance with 2
contexts still requires 20 PEs for
II= 4, since processor-like reconfig-
uration can only be utilized at every
other clock cycle. The optimized ar-
chitecture with 4 contexts requires
only 11 PEs and thereby only about

161



T
h
is
 a
rtic

le
 is
 p
ro
te
c
te
d
 b
y
 G
e
rm

a
n
 c
o
p
y
rig

h
t la

w
. Y

o
u
 m

a
y
 c
o
p
y
 a
n
d
 d
is
trib

u
te
 th

is
 a
rtic

le
 fo

r y
o
u
r p

e
rs
o
n
a
l u

s
e
 o
n
ly
. O

th
e
r u

s
e
 is
 o
n
ly
 a
llo

w
e
d
 w
ith

 w
ritte

n
 p
e
rm

is
s
io
n
 b
y
 th

e
 c
o
p
y
rig

h
t h

o
ld
e
r. 

Schwerpunktthema

half the area of the static architec-
ture.

The area improvements are
achieved even though for II= 2
and II= 4 the operations are
not perfectly distributed over the
different contexts which actually
would require only 18 and 9
PEs. We rather used exactly the
schedules proposed by Fig. 5b,
which also leads to a perform-
ance gain as discussed subse-
quently.

5.2 Performance
The CRC model allows a detailed
comparison of processor-like and
statically reconfigurable architec-
tures based on execution schemes
as described above. Due to cur-
rently restricted routing capabilities
of our compiler, only small exam-
ples can be mapped completely to
the CRC model. We therefore used
NEC’s DRP architecture to quantify
the performance benefits of redi-
recting communication through the
time domain.

Fig. 8 shows the clock frequen-
cies achieved for simplified 4-, 8-,
and 16-point FFTs at different IIs as
estimated by the DRP compiler after
placement and routing.

The pipelined (II= 1) and
multi-context pipelined (II= 2 and
4) execution was achieved by break-
ing up data dependencies in the
C code of the FFT. However, we
did not force a placement of the
operations as proposed by Fig. 5.

Figure 9 Power and energy estimations for a smaller example processing 100 input samples at 200 MHz (130 nm, 1.2 V).

Figure 8 Performance esti-
mations for the simplified
FFT.

This allows the compiler to optimize
the placement within one context,
which in turn leads to a mapping
of overlapping operations (Fig. 5b)
to different FUs possibly far apart.
Although this reduces the benefit of
redirecting communication through
the time domain, one can observe
a significant speed-up. This speed-
up is independent of placement and
solely due to the reduction of rout-
ing complexity.

Since the DRP requires less than
a nanosecond for selecting a con-
text [12], it can even outperform
a statically reconfigurable architec-
ture for II > 1. However, it should be
noted that for other applications we
experienced that the clock frequency
may actually decrease if the II is in-
creased.

5.3 Power
The area optimizations are based
on reusing architectural resources

that are not needed concurrently.
This reuse also prevents unneces-
sary circuit switching activities that
consume power. In addition to that,
the reduction of area reduces leak-
age currents that contribute signifi-
cantly to the power consumption of
90 nm and below process technolo-
gies.

On the other hand, reconfigura-
tion also consumes power. To eval-
uate the trade-off, we have mapped
a smaller example (out= (c1 · in1 +
c2 · in2 + c3 · in3 + c4) � c5) onto
instances of the CRC-A template in-
cluding routing on a NN-network
with one data channel. Fig. 9 shows
the results for II= 1 and II= 3
estimated after the gate-level simu-
lation of processing 100 samples at
200 MHz. The results are based on
architecture instances with a mini-
mized number of PEs, but the same
results can be achieved for larger ar-
rays by switching off unused PEs.

162



T
h
is
 a
rtic

le
 is
 p
ro
te
c
te
d
 b
y
 G
e
rm

a
n
 c
o
p
y
rig

h
t la

w
. Y

o
u
 m

a
y
 c
o
p
y
 a
n
d
 d
is
trib

u
te
 th

is
 a
rtic

le
 fo

r y
o
u
r p

e
rs
o
n
a
l u

s
e
 o
n
ly
. O

th
e
r u

s
e
 is
 o
n
ly
 a
llo

w
e
d
 w
ith

 w
ritte

n
 p
e
rm

is
s
io
n
 b
y
 th

e
 c
o
p
y
rig

h
t h

o
ld
e
r. 

Concepts and Evaluation of Processor-Like Reconfigurable Architectures���

A statically reconfigurable in-
stance requires 9 PEs (including
routing) for both IIs. For II= 3,
power increases because data must
be buffered for synchronization and,
due to the missing control unit, un-
necessary switching activity cannot
be avoided. Energy consumption
increases even more since the ex-
ecution time increases from 0.5 to
1.5 µs.

An optimized processor-like re-
configurable instance requires only
3 PEs and 3 contexts for II= 3, and
even instances with 4 or 8 contexts
dissipate significantly less power
than the static architecture. Since
switching contexts consumes power,
energy consumption for II= 3 is
higher than for II= 1 but still much
lower than for a statically reconfig-
urable architecture at II= 3.

Similar to the area evaluations,
such power evaluations require the
CRC model since a statically recon-
figurable variant of the DRP archi-
tecture is not available.

6 Voltage Reconfiguration
If we assume that, for example,
the delay of operation 3 in the
DFG of Fig. 5 is less than the de-
lay of operation 1, either due to the
FU or the interconnect delay, we
can exploit the slack time between
the two operations to optimize the
power consumption by reducing the
supply voltage of the faster opera-
tion. Although this reduction also
increases the delay of the faster
operation, it does not affect the
overall performance if the delay in-
crease is limited to the delay of
the slower operation. We extend the
concept of processor-like reconfig-
uration by applying reconfiguration
not only to the function of FU and
interconnect network, but also to
their supply voltages [11]. This fast

Table 1 Delay and power consumption of
a FU.

1.2 V 1.0 V

· 4.0 ns 5.5 ns
+ 2.7 ns 3.5 ns
P 3.7 mW 2.3 mW

voltage reconfiguration mechanism
allows the assignment of a desired
voltage to each functional unit re-
gardless of spatial position or time.
In order to illustrate this idea, we
synthesized instances of the CRC-
A template considering two voltage
levels. Table 1 describes the execu-
tion delay of the FU as a func-
tion of the operation type and the
supply voltage. The slower opera-
tion (multiplication) at higher sup-
ply voltage determines the minimal
clock period (4 ns). Suppose that
a multiplication and an addition are
executed in the same context and
in two different FUs. The FU ex-
ecuting the muliplication must be
supplied with high (1.2 V) oper-
ating voltage to keep the timing
constraint. However, the FU execut-
ing the addition can be reconfigured
to low (1.0 V) voltage because it
takes only 3.5 ns and therefore, it re-
mains within the pre-defined clock
period.

We see that, if the timing con-
straint is set between 4.0 and 5.5 ns,
it is possible to reduce the total
power consumption from 7.4 mW
(both FUs function at 1.2 V) to
6.0 mW (one FU functions at 1.2 V,
the other at 1.0 V), which is a re-
duction of 19 percent. The reduc-
tion of power consumption is thus
accomplished by extending the exe-
cution time of the faster operation
in the range of the defined timing
constraint. Delay and power con-
sumption have been evaluated using
commercial synthesis and power an-
alysis tools.

In contrast to other voltage scal-
ing approaches [9], this example
shows that it is possible to reduce
the power consumption without
modifying the clock frequency.

7 Conclusions
and Further Work

Processor-like reconfiguration en-
ables to reuse architectural resources
efficiently at each clock cycle. Due to
I/O constraints or branches in the
control flow, it is often not neces-
sary to implement all operations of
an application concurrently so that

the reuse can be exploited for a wide
range of applications and realized by
a high-level compiler.

The experiments demonstrate
that the overhead imposed by pro-
cessor-like reconfiguration is low
enough to achieve an overall reduc-
tion of area and power. By redi-
recting communication through the
time domain, even the perform-
ance can be increased compared to
a statically reconfigurable architec-
ture. Furthermore, the concept of
processor-like reconfiguration can-
not only be applied to the function-
ality of the architectural resources,
but also to their supply voltage to
optimize power.

Our ongoing work focuses
on exploring architectures opti-
mized for an application domain
rather than a single application [7],
since reconfigurable architectures
are usually not intended to be
used for just a single application.
Thereby we also consider the in-
tegration of processor-like recon-
figurable cores in a system-level
environment (System-on-a-Chip)
where, e. g., contexts are reloaded
from outside the array to set up
the execution of a new applica-
tion while another application is
still being executed using the entire
array.

Another core theme of our on-
going research is the co-develop-
ment of architecture and compiler
with respect to the interconnect net-
work. On the compiler side, we
develop techniques that combine
scheduling, placement, and routing,
taking into account the interconnect
delay which contributes significantly
to the overall performance. The
modifiable CRC model provides the
required delay estimations and al-
lows us to develop networks that
can be utilized efficiently by the
compiler.

References
[1] S. Alexander and R. Stewart: The

effects of pipelining feedback loops in

high speed DSP systems. In: IEEE Int’l

Conf. on Acoustics, Speech, and Signal

Processing (ICASSP), 2005.

163



T
h
is
 a
rtic

le
 is
 p
ro
te
c
te
d
 b
y
 G
e
rm

a
n
 c
o
p
y
rig

h
t la

w
. Y

o
u
 m

a
y
 c
o
p
y
 a
n
d
 d
is
trib

u
te
 th

is
 a
rtic

le
 fo

r y
o
u
r p

e
rs
o
n
a
l u

s
e
 o
n
ly
. O

th
e
r u

s
e
 is
 o
n
ly
 a
llo

w
e
d
 w
ith

 w
ritte

n
 p
e
rm

is
s
io
n
 b
y
 th

e
 c
o
p
y
rig

h
t h

o
ld
e
r. 

Schwerpunktthema

[2] J. Brenner, J. van der Veen, S. Fekete,

J. Oliveira Filho, and W. Rosenstiel:

Simultaneous scheduling, binding

and routing for processor-like

reconfigurable architectures. In: Int’l

Conf. on Field Programmable Logic

and Applications (FPL), 2006.

[3] H. Claßen: Evaluation of the FFT

on CRC. Student research project,

University of Tübingen (WSI/TI), 2005.

[4] A. DeHon: DPGA utilization and

application. In: Int’l Symp. on Field-

Programmable Gate Arrays (FPGA),

1996.

[5] B. Mei, S. Vernalde, D. Verkest,

H. DeMan, and R. Lauwereins:

Exploiting loop-level parallelism

on coarse-grained reconfigurable

architectures using modulo scheduling.

In: Design, Automation and Test in

Europe (DATE), 2003.

[6] M. Motomura: A dynamically

reconfigurable processor architecture.

In: Microprocessor Forum (MPF),

2002.

[7] J. Oliveira Filho, T. Schweizer,

T. Oppold, T. Kuhn, and

W. Rosenstiel: Tuning coarse-grained

reconfigurable architectures towards an

application domain. In: Int’l Conf. on

Reconfigurable Computing and FPGAs

(ReConFig), 2006.

[8] T. Oppold, S. Eisenhardt, and

W. Rosenstiel: Design and validation of

execution schemes for dynamically

reconfigurable architectures. In:

Int’l Conf. on Field Programmable

Technology (FPT), 2006.

[9] T. Pering, T. Burd, and R. Brodersen:

Voltage scheduling in the lpARM

microprocessor system. In: Int’l Symp.

on Low-Power Electronics and Design

(ISLPED), 2000.

[10] M. Rullmann, S. Siegel, R. Merker,

J. Oliveira Filho, T. Schweizer,

T. Oppold, and W. Rosenstiel: Efficient

mapping and functional verification

of parallel algorithms on a multi-

context reconfigurable architecture. In:

Architecture of Computing Systems

(ARCS), 2007.

[11] T. Schweizer, J. Oliveira Filho,

T. Oppold, T. Kuhn, and W. Rosenstiel:

Evaluation of temporal-spatial voltage

scaling for processor-like reconfigurable

architectures. In: Euro DesignCon,

2005.

[12] T. Toi, N. Nakamura, L. Jing, Y. Kato,

T. Awashima, and K. Wakabayashi:

High-level synthesis challenges

and solutions for a dynamically

reconfigurable processor. In: Int’l Conf.

on Computer-Aided Design (ICCAD),

2006.

[13] S. Trimberger, D. Carberry, A. Johnson,

and J. Wong: A time-multiplexed

FPGA. In: IEEE Symp. on Field-

Programmable Custom Computing

Machines (FCCM), 1997.

[14] K. Wakabayashi and T. Okamoto:

C-based SoC design flow and EDA

tools: An ASIC and system vendor

perspective. In: IEEE Trans. on CAD

of Integrated Circuits and Systems,

vol. 19, no. 12, pp. 1507–1522,

2000.

Shown from left to right:
Thomas Schweizer, Julio Oliveira Filho,
Wolfgang Rosenstiel, Sven Eisenhardt,
Tobias Oppold

1 Dipl.-Inform. Sven Eisenhardt, Julio

Oliveira Filho, MSc. in Computer Science,

Dipl.-Inform. Tobias Oppold, Prof.

Dr. Wolfgang Rosenstiel, Dipl.-Inform.

Thomas Schweizer The authors are

members of the Department of Computer

Engineering at the University of Tübingen.

Their research interests are in the field

of embedded systems and electronic

design automation with special focus

on reconfigurable systems, verification,

synthesis, parallel computing, artificial

neural networks, and organic computing.

Address: Eberhard-Karls-Universität

Tübingen, Wilhelm-Schickard-Institut für

Informatik, Sand 13, 72076 Tübingen,

Tel.: +49-7071-2978956, Fax: +49-7071-

295062, E-Mail: {eisenhar, oliveira, oppold,

rosenstiel, tschweiz}@informatik.uni-

tuebingen.de

164


